Edit model card

MedFalcon v2.1a 40b LoRA - Step 4500

img.png

Model Description

This a model check point release at 4500 steps. For evaluation use only! Limitations:

  • LoRA output will be more concise than the base model
  • Due to the size, base knowledge may be overwritten from falcon-40b
  • Due to the size, more hardware may be required to load falcon-40b when using this LoRA

Architecture

nmitchko/medfalconv2-1a-40b-lora' is a large language model LoRa specifically fine-tuned for medical domain tasks. It is based on Falcon-40b at 40 billion parameters.

The primary goal of this model is to improve question-answering and medical dialogue tasks. It was trained using LoRA, specifically QLora, to reduce memory footprint.

See Training Parameters for more info This Lora supports 4-bit and 8-bit modes.

Requirements

bitsandbytes>=0.39.0
peft
transformers

Steps to load this model:

  1. Load base model using transformers
  2. Apply LoRA using peft
# 
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
from peft import PeftModel

model = "tiiuae/falcon-40b"
LoRA = "nmitchko/medfalconv2-1a-40b-lora"

# If you want 8 or 4 bit set the appropriate flags
load_8bit = True

tokenizer = AutoTokenizer.from_pretrained(model)

model = AutoModelForCausalLM.from_pretrained(model,
    load_in_8bit=load_8bit,
    torch_dtype=torch.float16,
    trust_remote_code=True,
)

model = PeftModel.from_pretrained(model, LoRA)

pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)

sequences = pipeline(
   "What does the drug ceftrioxone do?\nDoctor:",
    max_length=200,
    do_sample=True,
    top_k=40,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)

for seq in sequences:
    print(f"Result: {seq['generated_text']}")

Training Parameters

The model was trained for 4500 steps or 1 epoch on a custom, unreleased dataset named medconcat. medconcat contains only human generated content and weighs in at over 100MiB of raw text.

The below bash script initiated training in 4bit mode for a rather large LoRA:

Item Amount Units
LoRA Rank 128 ~
LoRA Alpha 256 ~
Learning Rate 1e-3 SI
Dropout 5 %
CURRENTDATEONLY=`date +"%b %d %Y"`

sudo nvidia-smi -i 1 -pl 250

export CUDA_VISIBLE_DEVICES=0

nohup python qlora.py \
    --model_name_or_path models/tiiuae_falcon-40b \
    --output_dir ./loras/medfalcon2.1a-40b \
    --logging_steps 100 \
    --save_strategy steps \
    --data_seed 42 \
    --save_steps 200 \
    --save_total_limit 40 \
    --evaluation_strategy steps \
    --eval_dataset_size 1024 \
    --max_eval_samples 1000 \
    --per_device_eval_batch_size 1 \
    --max_new_tokens 32 \
    --dataloader_num_workers 3 \
    --group_by_length \
    --logging_strategy steps \
    --remove_unused_columns False \
    --do_train \
    --lora_r 128 \
    --lora_alpha 256 \
    --lora_modules all \
    --double_quant \
    --quant_type nf4 \
    --bf16 \
    --bits 4 \
    --warmup_ratio 0.03 \
    --lr_scheduler_type constant \
    --gradient_checkpointing \
    --dataset="training/datasets/medconcat/" \
    --dataset_format alpaca \
    --trust_remote_code=True \
    --source_max_len 16 \
    --target_max_len 512 \
    --per_device_train_batch_size 1 \
    --gradient_accumulation_steps 16 \
    --max_steps 4500 \
    --eval_steps 1000 \
    --learning_rate 0.0001 \
    --adam_beta2 0.999 \
    --max_grad_norm 0.3 \
    --lora_dropout 0.05 \
    --weight_decay 0.0 \
    --seed 0 > "${CURRENTDATEONLY}-finetune-medfalcon2.1a.log" &
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.