|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: XLS-R_Jibbali_lang |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# XLS-R_Jibbali_lang |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1752 |
|
- Wer: 0.1926 |
|
- Cer: 0.0770 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 16.5992 | 0.99 | 56 | 15.4050 | 1.0 | 0.9812 | |
|
| 3.79 | 2.0 | 113 | 3.3988 | 1.0 | 0.9812 | |
|
| 3.1872 | 2.99 | 169 | 3.1498 | 1.0 | 0.9812 | |
|
| 3.1705 | 4.0 | 226 | 3.1354 | 1.0 | 0.9812 | |
|
| 3.1147 | 4.99 | 282 | 3.0947 | 1.0 | 0.9812 | |
|
| 3.0616 | 6.0 | 339 | 2.9447 | 1.0 | 0.9460 | |
|
| 2.8239 | 6.99 | 395 | 2.6661 | 1.0 | 0.9106 | |
|
| 1.5494 | 8.0 | 452 | 1.0992 | 0.8684 | 0.3804 | |
|
| 0.5291 | 8.99 | 508 | 0.2822 | 0.3026 | 0.1004 | |
|
| 0.2022 | 10.0 | 565 | 0.2019 | 0.2080 | 0.0665 | |
|
| 0.1721 | 10.99 | 621 | 0.2067 | 0.2032 | 0.0841 | |
|
| 0.1705 | 12.0 | 678 | 0.1968 | 0.1996 | 0.0728 | |
|
| 0.0989 | 12.99 | 734 | 0.2038 | 0.1955 | 0.0821 | |
|
| 0.1299 | 14.0 | 791 | 0.1814 | 0.1963 | 0.0837 | |
|
| 0.1352 | 14.99 | 847 | 0.1896 | 0.1941 | 0.0768 | |
|
| 0.0487 | 16.0 | 904 | 0.1951 | 0.1933 | 0.0749 | |
|
| 0.1412 | 16.99 | 960 | 0.1650 | 0.1970 | 0.0818 | |
|
| 0.1027 | 18.0 | 1017 | 0.1720 | 0.1941 | 0.0783 | |
|
| 0.0791 | 18.99 | 1073 | 0.1730 | 0.1933 | 0.0767 | |
|
| 0.0406 | 19.82 | 1120 | 0.1752 | 0.1926 | 0.0770 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.2 |
|
|