|
--- |
|
license: apache-2.0 |
|
base_model: facebook/hubert-large-ll60k |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: speech_ocean_hubert_mdd |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# speech_ocean_hubert_mdd |
|
|
|
This model is a fine-tuned version of [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2027 |
|
- Wer: 0.0517 |
|
- Cer: 0.0499 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:| |
|
| 42.7069 | 0.9873 | 39 | 36.7247 | 0.9992 | 0.9977 | |
|
| 16.2787 | 2.0 | 79 | 7.8315 | 1.0 | 1.0 | |
|
| 6.7896 | 2.9873 | 118 | 4.5645 | 1.0 | 1.0 | |
|
| 4.0104 | 4.0 | 158 | 3.8654 | 1.0 | 1.0 | |
|
| 3.8037 | 4.9873 | 197 | 3.8060 | 1.0 | 1.0 | |
|
| 3.7898 | 6.0 | 237 | 3.7695 | 1.0 | 1.0 | |
|
| 3.7777 | 6.9873 | 276 | 3.7717 | 1.0 | 1.0 | |
|
| 3.7442 | 8.0 | 316 | 3.7320 | 1.0 | 1.0 | |
|
| 3.7286 | 8.9873 | 355 | 3.6978 | 1.0 | 1.0 | |
|
| 3.6272 | 10.0 | 395 | 3.5089 | 1.0 | 1.0 | |
|
| 3.0921 | 10.9873 | 434 | 2.6068 | 0.9992 | 0.9997 | |
|
| 2.2556 | 12.0 | 474 | 1.6832 | 0.5880 | 0.6815 | |
|
| 1.7791 | 12.9873 | 513 | 1.2117 | 0.3861 | 0.4433 | |
|
| 1.2731 | 14.0 | 553 | 0.7338 | 0.1793 | 0.1505 | |
|
| 0.9596 | 14.9873 | 592 | 0.4892 | 0.1220 | 0.1005 | |
|
| 0.7152 | 16.0 | 632 | 0.3525 | 0.0892 | 0.0752 | |
|
| 0.521 | 16.9873 | 671 | 0.2843 | 0.0704 | 0.0623 | |
|
| 0.4791 | 18.0 | 711 | 0.2351 | 0.0607 | 0.0568 | |
|
| 0.3992 | 18.9873 | 750 | 0.2120 | 0.0547 | 0.0523 | |
|
| 0.4245 | 19.7468 | 780 | 0.2027 | 0.0517 | 0.0499 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |
|
|