|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec_new |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec_new |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2743 |
|
- Wer: 0.1376 |
|
- Cer: 0.1333 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 32.6273 | 1.0 | 26 | 32.5059 | 0.9394 | 0.7539 | |
|
| 27.4795 | 2.0 | 52 | 22.9788 | 0.9996 | 0.9996 | |
|
| 16.8834 | 3.0 | 78 | 7.6200 | 1.0 | 1.0 | |
|
| 6.2939 | 4.0 | 104 | 4.0929 | 1.0 | 1.0 | |
|
| 3.5881 | 5.0 | 130 | 3.4107 | 1.0 | 1.0 | |
|
| 3.3449 | 6.0 | 156 | 3.2649 | 1.0 | 1.0 | |
|
| 3.2703 | 7.0 | 182 | 3.2285 | 1.0 | 1.0 | |
|
| 3.253 | 8.0 | 208 | 3.2188 | 1.0 | 1.0 | |
|
| 3.2074 | 9.0 | 234 | 3.1777 | 1.0 | 1.0 | |
|
| 3.2992 | 10.0 | 260 | 3.1773 | 1.0 | 1.0 | |
|
| 3.2007 | 11.0 | 286 | 3.1827 | 1.0 | 1.0 | |
|
| 3.1878 | 12.0 | 312 | 3.1493 | 1.0 | 1.0 | |
|
| 3.1495 | 13.0 | 338 | 3.0784 | 1.0 | 1.0 | |
|
| 3.082 | 14.0 | 364 | 2.9135 | 1.0 | 1.0 | |
|
| 2.8619 | 15.0 | 390 | 2.7388 | 1.0 | 1.0 | |
|
| 2.6435 | 16.0 | 416 | 2.4690 | 0.8928 | 0.9056 | |
|
| 2.0885 | 17.0 | 442 | 1.7109 | 0.8447 | 0.8546 | |
|
| 1.622 | 18.0 | 468 | 1.0533 | 0.4430 | 0.4414 | |
|
| 0.8878 | 19.0 | 494 | 0.5311 | 0.2669 | 0.2651 | |
|
| 0.4516 | 20.0 | 520 | 0.2743 | 0.1376 | 0.1333 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|