whisper-small-hre2 / README.md
ntviet's picture
End of training
0e1015d verified
metadata
language:
  - hre
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - ntviet/hre-audio-dataset2
metrics:
  - wer
model-index:
  - name: Whisper Small for Hre - NT Viet
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Hre audio dataset 2
          type: ntviet/hre-audio-dataset2
          config: default
          split: test
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 78.35820895522389

Whisper Small for Hre - NT Viet

This model is a fine-tuned version of openai/whisper-small on the Hre audio dataset 2 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5265
  • Wer Ortho: 78.0303
  • Wer: 78.3582

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.086 4.13 500 2.5265 78.0303 78.3582

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2