|
--- |
|
license: mit |
|
language: |
|
- en |
|
- fr |
|
- de |
|
- it |
|
- es |
|
- pt |
|
- pl |
|
- nl |
|
- ru |
|
pipeline_tag: token-classification |
|
inference: false |
|
tags: |
|
- mBERT |
|
- BERT |
|
- generic |
|
- entity-recognition |
|
--- |
|
|
|
## Model |
|
|
|
The [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased) finetunned on an artificially annotated multilingual subset of [Oscar dataset](https://huggingface.co/datasets/oscar-corpus/OSCAR-2201). This model provides domain & language independent embedding for Entity Recognition Task. |
|
|
|
## Usage |
|
|
|
Embeddings can be used out of the box or fine-tuned on specific datasets. |
|
|
|
Get embeddings: |
|
|
|
```python |
|
import torch |
|
import transformers |
|
|
|
|
|
model = transformers.AutoModel.from_pretrained( |
|
'numind/entity-recognition-general-sota-v1', |
|
output_hidden_states=True, |
|
) |
|
tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
'numind/entity-recognition-general-sota-v1', |
|
) |
|
|
|
text = [ |
|
"NuMind is an AI company based in Paris and USA.", |
|
"See other models from us on https://huggingface.co/numind" |
|
] |
|
encoded_input = tokenizer( |
|
text, |
|
return_tensors='pt', |
|
padding=True, |
|
truncation=True |
|
) |
|
output = model(**encoded_input) |
|
|
|
# for better quality |
|
emb = torch.cat( |
|
(output.hidden_states[-1], output.hidden_states[-7]), |
|
dim=2 |
|
) |
|
|
|
# for better speed |
|
# emb = output.hidden_states[-1] |
|
``` |