NuNER-v0.1 / README.md
Serega6678's picture
Update README.md
07e7c7a verified
---
license: mit
language:
- en
pipeline_tag: token-classification
inference: false
tags:
- token-classification
- entity-recognition
- foundation-model
- feature-extraction
- RoBERTa
- generic
datasets:
- numind/NuNER
---
# Entity Recognition English Foundation Model by NuMind 🔥
This model provides great token embedding for the Entity Recognition task in English.
We suggest using **newer version of this model: [NuNER v2.0](https://huggingface.co/numind/NuNER-v2.0)**
**Checkout other models by NuMind:**
* SOTA Multilingual Entity Recognition Foundation Model: [link](https://huggingface.co/numind/entity-recognition-multilingual-general-sota-v1)
* SOTA Sentiment Analysis Foundation Model: [English](https://huggingface.co/numind/generic-sentiment-v1), [Multilingual](https://huggingface.co/numind/generic-sentiment-multi-v1)
## About
[Roberta-base](https://huggingface.co/roberta-base) fine-tuned on [NuNER data](https://huggingface.co/datasets/numind/NuNER).
**Metrics:**
Read more about evaluation protocol & datasets in our [paper](https://arxiv.org/abs/2402.15343) and [blog post](https://www.numind.ai/blog/a-foundation-model-for-entity-recognition).
We suggest using **newer version of this model: [NuNER v2.0](https://huggingface.co/numind/NuNER-v2.0)**
| Model | k=1 | k=4 | k=16 | k=64 |
|----------|----------|----------|----------|----------|
| RoBERTa-base | 24.5 | 44.7 | 58.1 | 65.4
| RoBERTa-base + NER-BERT pre-training | 32.3 | 50.9 | 61.9 | 67.6 |
| NuNER v0.1 | 34.3 | 54.6 | 64.0 | 68.7 |
| NuNER v1.0 | 39.4 | 59.6 | 67.8 | 71.5 |
| **NuNER v2.0** | **43.6** | **61.0** | **68.2** | **72.0** |
## Usage
Embeddings can be used out of the box or fine-tuned on specific datasets.
Get embeddings:
```python
import torch
import transformers
model = transformers.AutoModel.from_pretrained(
'numind/NuNER-v0.1',
output_hidden_states=True
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
'numind/NuNER-v0.1'
)
text = [
"NuMind is an AI company based in Paris and USA.",
"See other models from us on https://huggingface.co/numind"
]
encoded_input = tokenizer(
text,
return_tensors='pt',
padding=True,
truncation=True
)
output = model(**encoded_input)
# for better quality
emb = torch.cat(
(output.hidden_states[-1], output.hidden_states[-7]),
dim=2
)
# for better speed
# emb = output.hidden_states[-1]
```
## Citation
```
@misc{bogdanov2024nuner,
title={NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated Data},
author={Sergei Bogdanov and Alexandre Constantin and Timothée Bernard and Benoit Crabbé and Etienne Bernard},
year={2024},
eprint={2402.15343},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```