NuNER_Zero-4k / README.md
etiennebcp's picture
Update README.md
8885743 verified
|
raw
history blame
3.49 kB
metadata
license: mit
datasets:
  - numind/NuNER
library_name: gliner
language:
  - en
pipeline_tag: token-classification
tags:
  - entity recognition
  - NER
  - named entity recognition
  - zero shot
  - zero-shot

NuNER Zero 4k is the long-context (4k tokens) version of NuNER Zero.

NuNER Zero 4k is generally less performant than NuNER Zero, but can outperform NuNER Zero on applications where context size matters.

Installation & Usage

!pip install gliner

NuZero requires labels to be lower-cased

from gliner import GLiNER


def merge_entities(entities):
    if not entities:
        return []
    merged = []
    current = entities[0]
    for next_entity in entities[1:]:
        if next_entity['label'] == current['label'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']):
            current['text'] = text[current['start']: next_entity['end']].strip()
            current['end'] = next_entity['end']
        else:
            merged.append(current)
            current = next_entity
    # Append the last entity
    merged.append(current)
    return merged


model = GLiNER.from_pretrained("numind/NuNerZero_long_context")

# NuZero requires labels to be lower-cased!
labels = ["organization", "initiative", "project"]
labels = [l.lower() for l in labels]

text = "At the annual technology summit, the keynote address was delivered by a senior member of the Association for Computing Machinery Special Interest Group on Algorithms and Computation Theory, which recently launched an expansive initiative titled 'Quantum Computing and Algorithmic Innovations: Shaping the Future of Technology'. This initiative explores the implications of quantum mechanics on next-generation computing and algorithm design and is part of a broader effort that includes the 'Global Computational Science Advancement Project'. The latter focuses on enhancing computational methodologies across scientific disciplines, aiming to set new benchmarks in computational efficiency and accuracy."

entities = model.predict_entities(text, labels)

entities = merge_entities(entities)

for entity in entities:
    print(entity["text"], "=>", entity["label"])
Association for Computing Machinery Special Interest Group on Algorithms and Computation Theory => organization
Quantum Computing and Algorithmic Innovations: Shaping the Future of Technology => initiative
Global Computational Science Advancement Project => project

Fine-tuning

A fine-tuning script can be found here.

Citation

This work

@misc{bogdanov2024nuner,
      title={NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated Data}, 
      author={Sergei Bogdanov and Alexandre Constantin and Timothée Bernard and Benoit Crabbé and Etienne Bernard},
      year={2024},
      eprint={2402.15343},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Previous work

@misc{zaratiana2023gliner,
      title={GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer}, 
      author={Urchade Zaratiana and Nadi Tomeh and Pierre Holat and Thierry Charnois},
      year={2023},
      eprint={2311.08526},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}