|
--- |
|
tags: |
|
- mteb |
|
- sentence-transformers |
|
model-index: |
|
- name: NV-Embed-v2 |
|
results: |
|
- dataset: |
|
config: en |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
split: test |
|
type: mteb/amazon_counterfactual |
|
metrics: |
|
- type: accuracy |
|
value: 94.28358208955224 |
|
- type: accuracy_stderr |
|
value: 0.40076780842082305 |
|
- type: ap |
|
value: 76.49097318319616 |
|
- type: ap_stderr |
|
value: 1.2418692675183929 |
|
- type: f1 |
|
value: 91.41982003001168 |
|
- type: f1_stderr |
|
value: 0.5043921413093579 |
|
- type: main_score |
|
value: 94.28358208955224 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB AmazonPolarityClassification |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
split: test |
|
type: mteb/amazon_polarity |
|
metrics: |
|
- type: accuracy |
|
value: 97.74185000000001 |
|
- type: accuracy_stderr |
|
value: 0.07420471683120942 |
|
- type: ap |
|
value: 96.4737144875525 |
|
- type: ap_stderr |
|
value: 0.2977518241541558 |
|
- type: f1 |
|
value: 97.7417581594921 |
|
- type: f1_stderr |
|
value: 0.07428763617010377 |
|
- type: main_score |
|
value: 97.74185000000001 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: en |
|
name: MTEB AmazonReviewsClassification (en) |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
split: test |
|
type: mteb/amazon_reviews_multi |
|
metrics: |
|
- type: accuracy |
|
value: 63.96000000000001 |
|
- type: accuracy_stderr |
|
value: 1.815555011559825 |
|
- type: f1 |
|
value: 62.49361841640459 |
|
- type: f1_stderr |
|
value: 2.829339314126457 |
|
- type: main_score |
|
value: 63.96000000000001 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB ArguAna |
|
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a |
|
split: test |
|
type: mteb/arguana |
|
metrics: |
|
- type: map_at_1 |
|
value: 46.515 |
|
- type: map_at_10 |
|
value: 62.392 |
|
- type: map_at_100 |
|
value: 62.732 |
|
- type: map_at_1000 |
|
value: 62.733000000000004 |
|
- type: map_at_3 |
|
value: 58.701 |
|
- type: map_at_5 |
|
value: 61.027 |
|
- type: mrr_at_1 |
|
value: 0.0 |
|
- type: mrr_at_10 |
|
value: 0.0 |
|
- type: mrr_at_100 |
|
value: 0.0 |
|
- type: mrr_at_1000 |
|
value: 0.0 |
|
- type: mrr_at_3 |
|
value: 0.0 |
|
- type: mrr_at_5 |
|
value: 0.0 |
|
- type: ndcg_at_1 |
|
value: 46.515 |
|
- type: ndcg_at_10 |
|
value: 70.074 |
|
- type: ndcg_at_100 |
|
value: 71.395 |
|
- type: ndcg_at_1000 |
|
value: 71.405 |
|
- type: ndcg_at_3 |
|
value: 62.643 |
|
- type: ndcg_at_5 |
|
value: 66.803 |
|
- type: precision_at_1 |
|
value: 46.515 |
|
- type: precision_at_10 |
|
value: 9.41 |
|
- type: precision_at_100 |
|
value: 0.996 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 24.68 |
|
- type: precision_at_5 |
|
value: 16.814 |
|
- type: recall_at_1 |
|
value: 46.515 |
|
- type: recall_at_10 |
|
value: 94.097 |
|
- type: recall_at_100 |
|
value: 99.57300000000001 |
|
- type: recall_at_1000 |
|
value: 99.644 |
|
- type: recall_at_3 |
|
value: 74.03999999999999 |
|
- type: recall_at_5 |
|
value: 84.068 |
|
- type: main_score |
|
value: 70.074 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB ArxivClusteringP2P |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
split: test |
|
type: mteb/arxiv-clustering-p2p |
|
metrics: |
|
- type: main_score |
|
value: 55.79933795955242 |
|
- type: v_measure |
|
value: 55.79933795955242 |
|
- type: v_measure_std |
|
value: 14.575108141916148 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB ArxivClusteringS2S |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
split: test |
|
type: mteb/arxiv-clustering-s2s |
|
metrics: |
|
- type: main_score |
|
value: 51.262845995850334 |
|
- type: v_measure |
|
value: 51.262845995850334 |
|
- type: v_measure_std |
|
value: 14.727824473104173 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB AskUbuntuDupQuestions |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
split: test |
|
type: mteb/askubuntudupquestions-reranking |
|
metrics: |
|
- type: map |
|
value: 67.46477327480808 |
|
- type: mrr |
|
value: 79.50160488941653 |
|
- type: main_score |
|
value: 67.46477327480808 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB BIOSSES |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
split: test |
|
type: mteb/biosses-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 89.74311007980987 |
|
- type: cosine_spearman |
|
value: 87.41644967443246 |
|
- type: manhattan_pearson |
|
value: 88.57457108347744 |
|
- type: manhattan_spearman |
|
value: 87.59295972042997 |
|
- type: euclidean_pearson |
|
value: 88.27108977118459 |
|
- type: euclidean_spearman |
|
value: 87.41644967443246 |
|
- type: main_score |
|
value: 87.41644967443246 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB Banking77Classification |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
split: test |
|
type: mteb/banking77 |
|
metrics: |
|
- type: accuracy |
|
value: 92.41558441558443 |
|
- type: accuracy_stderr |
|
value: 0.37701502251934443 |
|
- type: f1 |
|
value: 92.38130170447671 |
|
- type: f1_stderr |
|
value: 0.39115151225617767 |
|
- type: main_score |
|
value: 92.41558441558443 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB BiorxivClusteringP2P |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
split: test |
|
type: mteb/biorxiv-clustering-p2p |
|
metrics: |
|
- type: main_score |
|
value: 54.08649516394218 |
|
- type: v_measure |
|
value: 54.08649516394218 |
|
- type: v_measure_std |
|
value: 0.5303233693045373 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB BiorxivClusteringS2S |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
split: test |
|
type: mteb/biorxiv-clustering-s2s |
|
metrics: |
|
- type: main_score |
|
value: 49.60352214167779 |
|
- type: v_measure |
|
value: 49.60352214167779 |
|
- type: v_measure_std |
|
value: 0.7176198612516721 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB CQADupstackRetrieval |
|
revision: 46989137a86843e03a6195de44b09deda022eec7 |
|
split: test |
|
type: CQADupstackRetrieval_is_a_combined_dataset |
|
metrics: |
|
- type: map_at_1 |
|
value: 31.913249999999998 |
|
- type: map_at_10 |
|
value: 43.87733333333334 |
|
- type: map_at_100 |
|
value: 45.249916666666664 |
|
- type: map_at_1000 |
|
value: 45.350583333333326 |
|
- type: map_at_3 |
|
value: 40.316833333333335 |
|
- type: map_at_5 |
|
value: 42.317083333333336 |
|
- type: mrr_at_1 |
|
value: 0.0 |
|
- type: mrr_at_10 |
|
value: 0.0 |
|
- type: mrr_at_100 |
|
value: 0.0 |
|
- type: mrr_at_1000 |
|
value: 0.0 |
|
- type: mrr_at_3 |
|
value: 0.0 |
|
- type: mrr_at_5 |
|
value: 0.0 |
|
- type: ndcg_at_1 |
|
value: 38.30616666666667 |
|
- type: ndcg_at_10 |
|
value: 50.24175000000001 |
|
- type: ndcg_at_100 |
|
value: 55.345333333333336 |
|
- type: ndcg_at_1000 |
|
value: 56.91225000000001 |
|
- type: ndcg_at_3 |
|
value: 44.67558333333333 |
|
- type: ndcg_at_5 |
|
value: 47.32333333333334 |
|
- type: precision_at_1 |
|
value: 38.30616666666667 |
|
- type: precision_at_10 |
|
value: 9.007416666666666 |
|
- type: precision_at_100 |
|
value: 1.3633333333333333 |
|
- type: precision_at_1000 |
|
value: 0.16691666666666666 |
|
- type: precision_at_3 |
|
value: 20.895666666666667 |
|
- type: precision_at_5 |
|
value: 14.871666666666666 |
|
- type: recall_at_1 |
|
value: 31.913249999999998 |
|
- type: recall_at_10 |
|
value: 64.11891666666666 |
|
- type: recall_at_100 |
|
value: 85.91133333333333 |
|
- type: recall_at_1000 |
|
value: 96.28225 |
|
- type: recall_at_3 |
|
value: 48.54749999999999 |
|
- type: recall_at_5 |
|
value: 55.44283333333334 |
|
- type: main_score |
|
value: 50.24175000000001 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB ClimateFEVER |
|
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 |
|
split: test |
|
type: mteb/climate-fever |
|
metrics: |
|
- type: map_at_1 |
|
value: 19.556 |
|
- type: map_at_10 |
|
value: 34.623 |
|
- type: map_at_100 |
|
value: 36.97 |
|
- type: map_at_1000 |
|
value: 37.123 |
|
- type: map_at_3 |
|
value: 28.904999999999998 |
|
- type: map_at_5 |
|
value: 31.955 |
|
- type: mrr_at_1 |
|
value: 0.0 |
|
- type: mrr_at_10 |
|
value: 0.0 |
|
- type: mrr_at_100 |
|
value: 0.0 |
|
- type: mrr_at_1000 |
|
value: 0.0 |
|
- type: mrr_at_3 |
|
value: 0.0 |
|
- type: mrr_at_5 |
|
value: 0.0 |
|
- type: ndcg_at_1 |
|
value: 44.104 |
|
- type: ndcg_at_10 |
|
value: 45.388 |
|
- type: ndcg_at_100 |
|
value: 52.793 |
|
- type: ndcg_at_1000 |
|
value: 55.108999999999995 |
|
- type: ndcg_at_3 |
|
value: 38.604 |
|
- type: ndcg_at_5 |
|
value: 40.806 |
|
- type: precision_at_1 |
|
value: 44.104 |
|
- type: precision_at_10 |
|
value: 14.143 |
|
- type: precision_at_100 |
|
value: 2.2190000000000003 |
|
- type: precision_at_1000 |
|
value: 0.266 |
|
- type: precision_at_3 |
|
value: 29.316 |
|
- type: precision_at_5 |
|
value: 21.98 |
|
- type: recall_at_1 |
|
value: 19.556 |
|
- type: recall_at_10 |
|
value: 52.120999999999995 |
|
- type: recall_at_100 |
|
value: 76.509 |
|
- type: recall_at_1000 |
|
value: 89.029 |
|
- type: recall_at_3 |
|
value: 34.919 |
|
- type: recall_at_5 |
|
value: 42.18 |
|
- type: main_score |
|
value: 45.388 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB DBPedia |
|
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 |
|
split: test |
|
type: mteb/dbpedia |
|
metrics: |
|
- type: map_at_1 |
|
value: 10.714 |
|
- type: map_at_10 |
|
value: 25.814999999999998 |
|
- type: map_at_100 |
|
value: 37.845 |
|
- type: map_at_1000 |
|
value: 39.974 |
|
- type: map_at_3 |
|
value: 17.201 |
|
- type: map_at_5 |
|
value: 21.062 |
|
- type: mrr_at_1 |
|
value: 0.0 |
|
- type: mrr_at_10 |
|
value: 0.0 |
|
- type: mrr_at_100 |
|
value: 0.0 |
|
- type: mrr_at_1000 |
|
value: 0.0 |
|
- type: mrr_at_3 |
|
value: 0.0 |
|
- type: mrr_at_5 |
|
value: 0.0 |
|
- type: ndcg_at_1 |
|
value: 66.0 |
|
- type: ndcg_at_10 |
|
value: 53.496 |
|
- type: ndcg_at_100 |
|
value: 58.053 |
|
- type: ndcg_at_1000 |
|
value: 64.886 |
|
- type: ndcg_at_3 |
|
value: 57.656 |
|
- type: ndcg_at_5 |
|
value: 55.900000000000006 |
|
- type: precision_at_1 |
|
value: 77.25 |
|
- type: precision_at_10 |
|
value: 43.65 |
|
- type: precision_at_100 |
|
value: 13.76 |
|
- type: precision_at_1000 |
|
value: 2.5940000000000003 |
|
- type: precision_at_3 |
|
value: 61.0 |
|
- type: precision_at_5 |
|
value: 54.65 |
|
- type: recall_at_1 |
|
value: 10.714 |
|
- type: recall_at_10 |
|
value: 31.173000000000002 |
|
- type: recall_at_100 |
|
value: 63.404 |
|
- type: recall_at_1000 |
|
value: 85.874 |
|
- type: recall_at_3 |
|
value: 18.249000000000002 |
|
- type: recall_at_5 |
|
value: 23.69 |
|
- type: main_score |
|
value: 53.496 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB EmotionClassification |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
split: test |
|
type: mteb/emotion |
|
metrics: |
|
- type: accuracy |
|
value: 93.38499999999999 |
|
- type: accuracy_stderr |
|
value: 0.13793114224133846 |
|
- type: f1 |
|
value: 90.12141028353496 |
|
- type: f1_stderr |
|
value: 0.174640257706043 |
|
- type: main_score |
|
value: 93.38499999999999 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB FEVER |
|
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 |
|
split: test |
|
type: mteb/fever |
|
metrics: |
|
- type: map_at_1 |
|
value: 84.66900000000001 |
|
- type: map_at_10 |
|
value: 91.52799999999999 |
|
- type: map_at_100 |
|
value: 91.721 |
|
- type: map_at_1000 |
|
value: 91.73 |
|
- type: map_at_3 |
|
value: 90.752 |
|
- type: map_at_5 |
|
value: 91.262 |
|
- type: mrr_at_1 |
|
value: 0.0 |
|
- type: mrr_at_10 |
|
value: 0.0 |
|
- type: mrr_at_100 |
|
value: 0.0 |
|
- type: mrr_at_1000 |
|
value: 0.0 |
|
- type: mrr_at_3 |
|
value: 0.0 |
|
- type: mrr_at_5 |
|
value: 0.0 |
|
- type: ndcg_at_1 |
|
value: 91.20899999999999 |
|
- type: ndcg_at_10 |
|
value: 93.74900000000001 |
|
- type: ndcg_at_100 |
|
value: 94.279 |
|
- type: ndcg_at_1000 |
|
value: 94.408 |
|
- type: ndcg_at_3 |
|
value: 92.923 |
|
- type: ndcg_at_5 |
|
value: 93.376 |
|
- type: precision_at_1 |
|
value: 91.20899999999999 |
|
- type: precision_at_10 |
|
value: 11.059 |
|
- type: precision_at_100 |
|
value: 1.1560000000000001 |
|
- type: precision_at_1000 |
|
value: 0.11800000000000001 |
|
- type: precision_at_3 |
|
value: 35.129 |
|
- type: precision_at_5 |
|
value: 21.617 |
|
- type: recall_at_1 |
|
value: 84.66900000000001 |
|
- type: recall_at_10 |
|
value: 97.03399999999999 |
|
- type: recall_at_100 |
|
value: 98.931 |
|
- type: recall_at_1000 |
|
value: 99.65899999999999 |
|
- type: recall_at_3 |
|
value: 94.76299999999999 |
|
- type: recall_at_5 |
|
value: 95.968 |
|
- type: main_score |
|
value: 93.74900000000001 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB FiQA2018 |
|
revision: 27a168819829fe9bcd655c2df245fb19452e8e06 |
|
split: test |
|
type: mteb/fiqa |
|
metrics: |
|
- type: map_at_1 |
|
value: 34.866 |
|
- type: map_at_10 |
|
value: 58.06099999999999 |
|
- type: map_at_100 |
|
value: 60.028999999999996 |
|
- type: map_at_1000 |
|
value: 60.119 |
|
- type: map_at_3 |
|
value: 51.304 |
|
- type: map_at_5 |
|
value: 55.054 |
|
- type: mrr_at_1 |
|
value: 0.0 |
|
- type: mrr_at_10 |
|
value: 0.0 |
|
- type: mrr_at_100 |
|
value: 0.0 |
|
- type: mrr_at_1000 |
|
value: 0.0 |
|
- type: mrr_at_3 |
|
value: 0.0 |
|
- type: mrr_at_5 |
|
value: 0.0 |
|
- type: ndcg_at_1 |
|
value: 64.815 |
|
- type: ndcg_at_10 |
|
value: 65.729 |
|
- type: ndcg_at_100 |
|
value: 71.14 |
|
- type: ndcg_at_1000 |
|
value: 72.336 |
|
- type: ndcg_at_3 |
|
value: 61.973 |
|
- type: ndcg_at_5 |
|
value: 62.858000000000004 |
|
- type: precision_at_1 |
|
value: 64.815 |
|
- type: precision_at_10 |
|
value: 17.87 |
|
- type: precision_at_100 |
|
value: 2.373 |
|
- type: precision_at_1000 |
|
value: 0.258 |
|
- type: precision_at_3 |
|
value: 41.152 |
|
- type: precision_at_5 |
|
value: 29.568 |
|
- type: recall_at_1 |
|
value: 34.866 |
|
- type: recall_at_10 |
|
value: 72.239 |
|
- type: recall_at_100 |
|
value: 91.19 |
|
- type: recall_at_1000 |
|
value: 98.154 |
|
- type: recall_at_3 |
|
value: 56.472 |
|
- type: recall_at_5 |
|
value: 63.157 |
|
- type: main_score |
|
value: 65.729 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB HotpotQA |
|
revision: ab518f4d6fcca38d87c25209f94beba119d02014 |
|
split: test |
|
type: mteb/hotpotqa |
|
metrics: |
|
- type: map_at_1 |
|
value: 44.651999999999994 |
|
- type: map_at_10 |
|
value: 79.95100000000001 |
|
- type: map_at_100 |
|
value: 80.51700000000001 |
|
- type: map_at_1000 |
|
value: 80.542 |
|
- type: map_at_3 |
|
value: 77.008 |
|
- type: map_at_5 |
|
value: 78.935 |
|
- type: mrr_at_1 |
|
value: 0.0 |
|
- type: mrr_at_10 |
|
value: 0.0 |
|
- type: mrr_at_100 |
|
value: 0.0 |
|
- type: mrr_at_1000 |
|
value: 0.0 |
|
- type: mrr_at_3 |
|
value: 0.0 |
|
- type: mrr_at_5 |
|
value: 0.0 |
|
- type: ndcg_at_1 |
|
value: 89.305 |
|
- type: ndcg_at_10 |
|
value: 85.479 |
|
- type: ndcg_at_100 |
|
value: 87.235 |
|
- type: ndcg_at_1000 |
|
value: 87.669 |
|
- type: ndcg_at_3 |
|
value: 81.648 |
|
- type: ndcg_at_5 |
|
value: 83.88600000000001 |
|
- type: precision_at_1 |
|
value: 89.305 |
|
- type: precision_at_10 |
|
value: 17.807000000000002 |
|
- type: precision_at_100 |
|
value: 1.9140000000000001 |
|
- type: precision_at_1000 |
|
value: 0.197 |
|
- type: precision_at_3 |
|
value: 53.756 |
|
- type: precision_at_5 |
|
value: 34.018 |
|
- type: recall_at_1 |
|
value: 44.651999999999994 |
|
- type: recall_at_10 |
|
value: 89.034 |
|
- type: recall_at_100 |
|
value: 95.719 |
|
- type: recall_at_1000 |
|
value: 98.535 |
|
- type: recall_at_3 |
|
value: 80.635 |
|
- type: recall_at_5 |
|
value: 85.044 |
|
- type: main_score |
|
value: 85.479 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB ImdbClassification |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
split: test |
|
type: mteb/imdb |
|
metrics: |
|
- type: accuracy |
|
value: 97.1376 |
|
- type: accuracy_stderr |
|
value: 0.04571914259913447 |
|
- type: ap |
|
value: 95.92783808558808 |
|
- type: ap_stderr |
|
value: 0.05063782483358255 |
|
- type: f1 |
|
value: 97.13755519177172 |
|
- type: f1_stderr |
|
value: 0.04575943074086138 |
|
- type: main_score |
|
value: 97.1376 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB MSMARCO |
|
revision: c5a29a104738b98a9e76336939199e264163d4a0 |
|
split: dev |
|
type: mteb/msmarco |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.0 |
|
- type: map_at_10 |
|
value: 38.342 |
|
- type: map_at_100 |
|
value: 0.0 |
|
- type: map_at_1000 |
|
value: 0.0 |
|
- type: map_at_3 |
|
value: 0.0 |
|
- type: map_at_5 |
|
value: 0.0 |
|
- type: mrr_at_1 |
|
value: 0.0 |
|
- type: mrr_at_10 |
|
value: 0.0 |
|
- type: mrr_at_100 |
|
value: 0.0 |
|
- type: mrr_at_1000 |
|
value: 0.0 |
|
- type: mrr_at_3 |
|
value: 0.0 |
|
- type: mrr_at_5 |
|
value: 0.0 |
|
- type: ndcg_at_1 |
|
value: 0.0 |
|
- type: ndcg_at_10 |
|
value: 45.629999999999995 |
|
- type: ndcg_at_100 |
|
value: 0.0 |
|
- type: ndcg_at_1000 |
|
value: 0.0 |
|
- type: ndcg_at_3 |
|
value: 0.0 |
|
- type: ndcg_at_5 |
|
value: 0.0 |
|
- type: precision_at_1 |
|
value: 0.0 |
|
- type: precision_at_10 |
|
value: 7.119000000000001 |
|
- type: precision_at_100 |
|
value: 0.0 |
|
- type: precision_at_1000 |
|
value: 0.0 |
|
- type: precision_at_3 |
|
value: 0.0 |
|
- type: precision_at_5 |
|
value: 0.0 |
|
- type: recall_at_1 |
|
value: 0.0 |
|
- type: recall_at_10 |
|
value: 67.972 |
|
- type: recall_at_100 |
|
value: 0.0 |
|
- type: recall_at_1000 |
|
value: 0.0 |
|
- type: recall_at_3 |
|
value: 0.0 |
|
- type: recall_at_5 |
|
value: 0.0 |
|
- type: main_score |
|
value: 45.629999999999995 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: en |
|
name: MTEB MTOPDomainClassification (en) |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
split: test |
|
type: mteb/mtop_domain |
|
metrics: |
|
- type: accuracy |
|
value: 99.24988600091199 |
|
- type: accuracy_stderr |
|
value: 0.04496826931900734 |
|
- type: f1 |
|
value: 99.15933275095276 |
|
- type: f1_stderr |
|
value: 0.05565039139747446 |
|
- type: main_score |
|
value: 99.24988600091199 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: en |
|
name: MTEB MTOPIntentClassification (en) |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
split: test |
|
type: mteb/mtop_intent |
|
metrics: |
|
- type: accuracy |
|
value: 94.3684450524396 |
|
- type: accuracy_stderr |
|
value: 0.8436548701322188 |
|
- type: f1 |
|
value: 77.33022623133307 |
|
- type: f1_stderr |
|
value: 0.9228425861187275 |
|
- type: main_score |
|
value: 94.3684450524396 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: en |
|
name: MTEB MassiveIntentClassification (en) |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
split: test |
|
type: mteb/amazon_massive_intent |
|
metrics: |
|
- type: accuracy |
|
value: 86.09616677874916 |
|
- type: accuracy_stderr |
|
value: 0.9943208055590853 |
|
- type: f1 |
|
value: 83.4902056490062 |
|
- type: f1_stderr |
|
value: 0.7626189310074184 |
|
- type: main_score |
|
value: 86.09616677874916 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: en |
|
name: MTEB MassiveScenarioClassification (en) |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
split: test |
|
type: mteb/amazon_massive_scenario |
|
metrics: |
|
- type: accuracy |
|
value: 92.17215870880968 |
|
- type: accuracy_stderr |
|
value: 0.25949941333658166 |
|
- type: f1 |
|
value: 91.36757392422702 |
|
- type: f1_stderr |
|
value: 0.29139507298154815 |
|
- type: main_score |
|
value: 92.17215870880968 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB MedrxivClusteringP2P |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
split: test |
|
type: mteb/medrxiv-clustering-p2p |
|
metrics: |
|
- type: main_score |
|
value: 46.09497344077905 |
|
- type: v_measure |
|
value: 46.09497344077905 |
|
- type: v_measure_std |
|
value: 1.44871520869784 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB MedrxivClusteringS2S |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
split: test |
|
type: mteb/medrxiv-clustering-s2s |
|
metrics: |
|
- type: main_score |
|
value: 44.861049989560684 |
|
- type: v_measure |
|
value: 44.861049989560684 |
|
- type: v_measure_std |
|
value: 1.432199293162203 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB MindSmallReranking |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
split: test |
|
type: mteb/mind_small |
|
metrics: |
|
- type: map |
|
value: 31.75936162919999 |
|
- type: mrr |
|
value: 32.966812736541236 |
|
- type: main_score |
|
value: 31.75936162919999 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB NFCorpus |
|
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 |
|
split: test |
|
type: mteb/nfcorpus |
|
metrics: |
|
- type: map_at_1 |
|
value: 7.893999999999999 |
|
- type: map_at_10 |
|
value: 17.95 |
|
- type: map_at_100 |
|
value: 23.474 |
|
- type: map_at_1000 |
|
value: 25.412000000000003 |
|
- type: map_at_3 |
|
value: 12.884 |
|
- type: map_at_5 |
|
value: 15.171000000000001 |
|
- type: mrr_at_1 |
|
value: 0.0 |
|
- type: mrr_at_10 |
|
value: 0.0 |
|
- type: mrr_at_100 |
|
value: 0.0 |
|
- type: mrr_at_1000 |
|
value: 0.0 |
|
- type: mrr_at_3 |
|
value: 0.0 |
|
- type: mrr_at_5 |
|
value: 0.0 |
|
- type: ndcg_at_1 |
|
value: 55.728 |
|
- type: ndcg_at_10 |
|
value: 45.174 |
|
- type: ndcg_at_100 |
|
value: 42.18 |
|
- type: ndcg_at_1000 |
|
value: 50.793 |
|
- type: ndcg_at_3 |
|
value: 50.322 |
|
- type: ndcg_at_5 |
|
value: 48.244 |
|
- type: precision_at_1 |
|
value: 57.276 |
|
- type: precision_at_10 |
|
value: 33.437 |
|
- type: precision_at_100 |
|
value: 10.671999999999999 |
|
- type: precision_at_1000 |
|
value: 2.407 |
|
- type: precision_at_3 |
|
value: 46.646 |
|
- type: precision_at_5 |
|
value: 41.672 |
|
- type: recall_at_1 |
|
value: 7.893999999999999 |
|
- type: recall_at_10 |
|
value: 22.831000000000003 |
|
- type: recall_at_100 |
|
value: 43.818 |
|
- type: recall_at_1000 |
|
value: 75.009 |
|
- type: recall_at_3 |
|
value: 14.371 |
|
- type: recall_at_5 |
|
value: 17.752000000000002 |
|
- type: main_score |
|
value: 45.174 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB NQ |
|
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 |
|
split: test |
|
type: mteb/nq |
|
metrics: |
|
- type: map_at_1 |
|
value: 49.351 |
|
- type: map_at_10 |
|
value: 66.682 |
|
- type: map_at_100 |
|
value: 67.179 |
|
- type: map_at_1000 |
|
value: 67.18499999999999 |
|
- type: map_at_3 |
|
value: 62.958999999999996 |
|
- type: map_at_5 |
|
value: 65.364 |
|
- type: mrr_at_1 |
|
value: 0.0 |
|
- type: mrr_at_10 |
|
value: 0.0 |
|
- type: mrr_at_100 |
|
value: 0.0 |
|
- type: mrr_at_1000 |
|
value: 0.0 |
|
- type: mrr_at_3 |
|
value: 0.0 |
|
- type: mrr_at_5 |
|
value: 0.0 |
|
- type: ndcg_at_1 |
|
value: 55.417 |
|
- type: ndcg_at_10 |
|
value: 73.568 |
|
- type: ndcg_at_100 |
|
value: 75.35 |
|
- type: ndcg_at_1000 |
|
value: 75.478 |
|
- type: ndcg_at_3 |
|
value: 67.201 |
|
- type: ndcg_at_5 |
|
value: 70.896 |
|
- type: precision_at_1 |
|
value: 55.417 |
|
- type: precision_at_10 |
|
value: 11.036999999999999 |
|
- type: precision_at_100 |
|
value: 1.204 |
|
- type: precision_at_1000 |
|
value: 0.121 |
|
- type: precision_at_3 |
|
value: 29.654000000000003 |
|
- type: precision_at_5 |
|
value: 20.006 |
|
- type: recall_at_1 |
|
value: 49.351 |
|
- type: recall_at_10 |
|
value: 91.667 |
|
- type: recall_at_100 |
|
value: 98.89 |
|
- type: recall_at_1000 |
|
value: 99.812 |
|
- type: recall_at_3 |
|
value: 75.715 |
|
- type: recall_at_5 |
|
value: 84.072 |
|
- type: main_score |
|
value: 73.568 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB QuoraRetrieval |
|
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 |
|
split: test |
|
type: mteb/quora |
|
metrics: |
|
- type: map_at_1 |
|
value: 71.358 |
|
- type: map_at_10 |
|
value: 85.474 |
|
- type: map_at_100 |
|
value: 86.101 |
|
- type: map_at_1000 |
|
value: 86.114 |
|
- type: map_at_3 |
|
value: 82.562 |
|
- type: map_at_5 |
|
value: 84.396 |
|
- type: mrr_at_1 |
|
value: 0.0 |
|
- type: mrr_at_10 |
|
value: 0.0 |
|
- type: mrr_at_100 |
|
value: 0.0 |
|
- type: mrr_at_1000 |
|
value: 0.0 |
|
- type: mrr_at_3 |
|
value: 0.0 |
|
- type: mrr_at_5 |
|
value: 0.0 |
|
- type: ndcg_at_1 |
|
value: 82.12 |
|
- type: ndcg_at_10 |
|
value: 89.035 |
|
- type: ndcg_at_100 |
|
value: 90.17399999999999 |
|
- type: ndcg_at_1000 |
|
value: 90.243 |
|
- type: ndcg_at_3 |
|
value: 86.32300000000001 |
|
- type: ndcg_at_5 |
|
value: 87.85 |
|
- type: precision_at_1 |
|
value: 82.12 |
|
- type: precision_at_10 |
|
value: 13.55 |
|
- type: precision_at_100 |
|
value: 1.54 |
|
- type: precision_at_1000 |
|
value: 0.157 |
|
- type: precision_at_3 |
|
value: 37.89 |
|
- type: precision_at_5 |
|
value: 24.9 |
|
- type: recall_at_1 |
|
value: 71.358 |
|
- type: recall_at_10 |
|
value: 95.855 |
|
- type: recall_at_100 |
|
value: 99.711 |
|
- type: recall_at_1000 |
|
value: 99.994 |
|
- type: recall_at_3 |
|
value: 88.02 |
|
- type: recall_at_5 |
|
value: 92.378 |
|
- type: main_score |
|
value: 89.035 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB RedditClustering |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
split: test |
|
type: mteb/reddit-clustering |
|
metrics: |
|
- type: main_score |
|
value: 71.0984522742521 |
|
- type: v_measure |
|
value: 71.0984522742521 |
|
- type: v_measure_std |
|
value: 3.5668139917058044 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB RedditClusteringP2P |
|
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 |
|
split: test |
|
type: mteb/reddit-clustering-p2p |
|
metrics: |
|
- type: main_score |
|
value: 74.94499641904133 |
|
- type: v_measure |
|
value: 74.94499641904133 |
|
- type: v_measure_std |
|
value: 11.419672879389248 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB SCIDOCS |
|
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 |
|
split: test |
|
type: mteb/scidocs |
|
metrics: |
|
- type: map_at_1 |
|
value: 5.343 |
|
- type: map_at_10 |
|
value: 13.044 |
|
- type: map_at_100 |
|
value: 15.290999999999999 |
|
- type: map_at_1000 |
|
value: 15.609 |
|
- type: map_at_3 |
|
value: 9.227 |
|
- type: map_at_5 |
|
value: 11.158 |
|
- type: mrr_at_1 |
|
value: 0.0 |
|
- type: mrr_at_10 |
|
value: 0.0 |
|
- type: mrr_at_100 |
|
value: 0.0 |
|
- type: mrr_at_1000 |
|
value: 0.0 |
|
- type: mrr_at_3 |
|
value: 0.0 |
|
- type: mrr_at_5 |
|
value: 0.0 |
|
- type: ndcg_at_1 |
|
value: 26.3 |
|
- type: ndcg_at_10 |
|
value: 21.901 |
|
- type: ndcg_at_100 |
|
value: 30.316 |
|
- type: ndcg_at_1000 |
|
value: 35.547000000000004 |
|
- type: ndcg_at_3 |
|
value: 20.560000000000002 |
|
- type: ndcg_at_5 |
|
value: 18.187 |
|
- type: precision_at_1 |
|
value: 26.3 |
|
- type: precision_at_10 |
|
value: 11.34 |
|
- type: precision_at_100 |
|
value: 2.344 |
|
- type: precision_at_1000 |
|
value: 0.359 |
|
- type: precision_at_3 |
|
value: 18.967 |
|
- type: precision_at_5 |
|
value: 15.920000000000002 |
|
- type: recall_at_1 |
|
value: 5.343 |
|
- type: recall_at_10 |
|
value: 22.997 |
|
- type: recall_at_100 |
|
value: 47.562 |
|
- type: recall_at_1000 |
|
value: 72.94500000000001 |
|
- type: recall_at_3 |
|
value: 11.533 |
|
- type: recall_at_5 |
|
value: 16.148 |
|
- type: main_score |
|
value: 21.901 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB SICK-R |
|
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d |
|
split: test |
|
type: mteb/sickr-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 87.3054603493591 |
|
- type: cosine_spearman |
|
value: 82.14763206055602 |
|
- type: manhattan_pearson |
|
value: 84.78737790237557 |
|
- type: manhattan_spearman |
|
value: 81.88455356002758 |
|
- type: euclidean_pearson |
|
value: 85.00668629311117 |
|
- type: euclidean_spearman |
|
value: 82.14763037860851 |
|
- type: main_score |
|
value: 82.14763206055602 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS12 |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
split: test |
|
type: mteb/sts12-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 86.6911864687294 |
|
- type: cosine_spearman |
|
value: 77.89286260403269 |
|
- type: manhattan_pearson |
|
value: 82.87240347680857 |
|
- type: manhattan_spearman |
|
value: 78.10055393740326 |
|
- type: euclidean_pearson |
|
value: 82.72282535777123 |
|
- type: euclidean_spearman |
|
value: 77.89256648406325 |
|
- type: main_score |
|
value: 77.89286260403269 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS13 |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
split: test |
|
type: mteb/sts13-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 87.7220832598633 |
|
- type: cosine_spearman |
|
value: 88.30238972017452 |
|
- type: manhattan_pearson |
|
value: 87.88214789140248 |
|
- type: manhattan_spearman |
|
value: 88.24770220032391 |
|
- type: euclidean_pearson |
|
value: 87.98610386257103 |
|
- type: euclidean_spearman |
|
value: 88.30238972017452 |
|
- type: main_score |
|
value: 88.30238972017452 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS14 |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
split: test |
|
type: mteb/sts14-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 85.70614623247714 |
|
- type: cosine_spearman |
|
value: 84.29920990970672 |
|
- type: manhattan_pearson |
|
value: 84.9836190531721 |
|
- type: manhattan_spearman |
|
value: 84.40933470597638 |
|
- type: euclidean_pearson |
|
value: 84.96652336693347 |
|
- type: euclidean_spearman |
|
value: 84.29920989531965 |
|
- type: main_score |
|
value: 84.29920990970672 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS15 |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
split: test |
|
type: mteb/sts15-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 88.4169972425264 |
|
- type: cosine_spearman |
|
value: 89.03555007807218 |
|
- type: manhattan_pearson |
|
value: 88.83068699455478 |
|
- type: manhattan_spearman |
|
value: 89.21877175674125 |
|
- type: euclidean_pearson |
|
value: 88.7251052947544 |
|
- type: euclidean_spearman |
|
value: 89.03557389893083 |
|
- type: main_score |
|
value: 89.03555007807218 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS16 |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
split: test |
|
type: mteb/sts16-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 85.63830579034632 |
|
- type: cosine_spearman |
|
value: 86.77353371581373 |
|
- type: manhattan_pearson |
|
value: 86.24830492396637 |
|
- type: manhattan_spearman |
|
value: 86.96754348626189 |
|
- type: euclidean_pearson |
|
value: 86.09837038778359 |
|
- type: euclidean_spearman |
|
value: 86.77353371581373 |
|
- type: main_score |
|
value: 86.77353371581373 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: en-en |
|
name: MTEB STS17 (en-en) |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 91.2204675588959 |
|
- type: cosine_spearman |
|
value: 90.66976712249057 |
|
- type: manhattan_pearson |
|
value: 91.11007808242346 |
|
- type: manhattan_spearman |
|
value: 90.51739232964488 |
|
- type: euclidean_pearson |
|
value: 91.19588941007903 |
|
- type: euclidean_spearman |
|
value: 90.66976712249057 |
|
- type: main_score |
|
value: 90.66976712249057 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: en |
|
name: MTEB STS22 (en) |
|
revision: eea2b4fe26a775864c896887d910b76a8098ad3f |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 69.34416749707114 |
|
- type: cosine_spearman |
|
value: 68.11632448161046 |
|
- type: manhattan_pearson |
|
value: 68.99243488935281 |
|
- type: manhattan_spearman |
|
value: 67.8398546438258 |
|
- type: euclidean_pearson |
|
value: 69.06376010216088 |
|
- type: euclidean_spearman |
|
value: 68.11632448161046 |
|
- type: main_score |
|
value: 68.11632448161046 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STSBenchmark |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
split: test |
|
type: mteb/stsbenchmark-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 88.10309739429758 |
|
- type: cosine_spearman |
|
value: 88.40520383147418 |
|
- type: manhattan_pearson |
|
value: 88.50753383813232 |
|
- type: manhattan_spearman |
|
value: 88.66382629460927 |
|
- type: euclidean_pearson |
|
value: 88.35050664609376 |
|
- type: euclidean_spearman |
|
value: 88.40520383147418 |
|
- type: main_score |
|
value: 88.40520383147418 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB SciDocsRR |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
split: test |
|
type: mteb/scidocs-reranking |
|
metrics: |
|
- type: map |
|
value: 87.58627126942797 |
|
- type: mrr |
|
value: 97.01098103058887 |
|
- type: main_score |
|
value: 87.58627126942797 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB SciFact |
|
revision: 0228b52cf27578f30900b9e5271d331663a030d7 |
|
split: test |
|
type: mteb/scifact |
|
metrics: |
|
- type: map_at_1 |
|
value: 62.883 |
|
- type: map_at_10 |
|
value: 75.371 |
|
- type: map_at_100 |
|
value: 75.66000000000001 |
|
- type: map_at_1000 |
|
value: 75.667 |
|
- type: map_at_3 |
|
value: 72.741 |
|
- type: map_at_5 |
|
value: 74.74 |
|
- type: mrr_at_1 |
|
value: 0.0 |
|
- type: mrr_at_10 |
|
value: 0.0 |
|
- type: mrr_at_100 |
|
value: 0.0 |
|
- type: mrr_at_1000 |
|
value: 0.0 |
|
- type: mrr_at_3 |
|
value: 0.0 |
|
- type: mrr_at_5 |
|
value: 0.0 |
|
- type: ndcg_at_1 |
|
value: 66.0 |
|
- type: ndcg_at_10 |
|
value: 80.12700000000001 |
|
- type: ndcg_at_100 |
|
value: 81.291 |
|
- type: ndcg_at_1000 |
|
value: 81.464 |
|
- type: ndcg_at_3 |
|
value: 76.19 |
|
- type: ndcg_at_5 |
|
value: 78.827 |
|
- type: precision_at_1 |
|
value: 66.0 |
|
- type: precision_at_10 |
|
value: 10.567 |
|
- type: precision_at_100 |
|
value: 1.117 |
|
- type: precision_at_1000 |
|
value: 0.11299999999999999 |
|
- type: precision_at_3 |
|
value: 30.333 |
|
- type: precision_at_5 |
|
value: 20.133000000000003 |
|
- type: recall_at_1 |
|
value: 62.883 |
|
- type: recall_at_10 |
|
value: 93.556 |
|
- type: recall_at_100 |
|
value: 98.667 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_3 |
|
value: 83.322 |
|
- type: recall_at_5 |
|
value: 89.756 |
|
- type: main_score |
|
value: 80.12700000000001 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB SprintDuplicateQuestions |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
split: test |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.87524752475248 |
|
- type: cos_sim_accuracy_threshold |
|
value: 74.86587762832642 |
|
- type: cos_sim_ap |
|
value: 97.02222446606328 |
|
- type: cos_sim_f1 |
|
value: 93.66197183098592 |
|
- type: cos_sim_f1_threshold |
|
value: 74.74223375320435 |
|
- type: cos_sim_precision |
|
value: 94.23076923076923 |
|
- type: cos_sim_recall |
|
value: 93.10000000000001 |
|
- type: dot_accuracy |
|
value: 99.87524752475248 |
|
- type: dot_accuracy_threshold |
|
value: 74.86587762832642 |
|
- type: dot_ap |
|
value: 97.02222688043362 |
|
- type: dot_f1 |
|
value: 93.66197183098592 |
|
- type: dot_f1_threshold |
|
value: 74.74223375320435 |
|
- type: dot_precision |
|
value: 94.23076923076923 |
|
- type: dot_recall |
|
value: 93.10000000000001 |
|
- type: euclidean_accuracy |
|
value: 99.87524752475248 |
|
- type: euclidean_accuracy_threshold |
|
value: 70.9000825881958 |
|
- type: euclidean_ap |
|
value: 97.02222446606329 |
|
- type: euclidean_f1 |
|
value: 93.66197183098592 |
|
- type: euclidean_f1_threshold |
|
value: 71.07426524162292 |
|
- type: euclidean_precision |
|
value: 94.23076923076923 |
|
- type: euclidean_recall |
|
value: 93.10000000000001 |
|
- type: manhattan_accuracy |
|
value: 99.87623762376238 |
|
- type: manhattan_accuracy_threshold |
|
value: 3588.5040283203125 |
|
- type: manhattan_ap |
|
value: 97.09194643777883 |
|
- type: manhattan_f1 |
|
value: 93.7375745526839 |
|
- type: manhattan_f1_threshold |
|
value: 3664.3760681152344 |
|
- type: manhattan_precision |
|
value: 93.18181818181817 |
|
- type: manhattan_recall |
|
value: 94.3 |
|
- type: max_accuracy |
|
value: 99.87623762376238 |
|
- type: max_ap |
|
value: 97.09194643777883 |
|
- type: max_f1 |
|
value: 93.7375745526839 |
|
task: |
|
type: PairClassification |
|
- dataset: |
|
config: default |
|
name: MTEB StackExchangeClustering |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
split: test |
|
type: mteb/stackexchange-clustering |
|
metrics: |
|
- type: main_score |
|
value: 82.10134099988541 |
|
- type: v_measure |
|
value: 82.10134099988541 |
|
- type: v_measure_std |
|
value: 2.7926349897769533 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB StackExchangeClusteringP2P |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
split: test |
|
type: mteb/stackexchange-clustering-p2p |
|
metrics: |
|
- type: main_score |
|
value: 48.357450742397404 |
|
- type: v_measure |
|
value: 48.357450742397404 |
|
- type: v_measure_std |
|
value: 1.520118876440547 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB StackOverflowDupQuestions |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
split: test |
|
type: mteb/stackoverflowdupquestions-reranking |
|
metrics: |
|
- type: map |
|
value: 55.79277200802986 |
|
- type: mrr |
|
value: 56.742517082590616 |
|
- type: main_score |
|
value: 55.79277200802986 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB SummEval |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
split: test |
|
type: mteb/summeval |
|
metrics: |
|
- type: cosine_spearman |
|
value: 30.701215774712693 |
|
- type: cosine_pearson |
|
value: 31.26740037278488 |
|
- type: dot_spearman |
|
value: 30.701215774712693 |
|
- type: dot_pearson |
|
value: 31.267404144879997 |
|
- type: main_score |
|
value: 30.701215774712693 |
|
task: |
|
type: Summarization |
|
- dataset: |
|
config: default |
|
name: MTEB TRECCOVID |
|
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e |
|
split: test |
|
type: mteb/trec-covid |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.23800000000000002 |
|
- type: map_at_10 |
|
value: 2.31 |
|
- type: map_at_100 |
|
value: 15.495000000000001 |
|
- type: map_at_1000 |
|
value: 38.829 |
|
- type: map_at_3 |
|
value: 0.72 |
|
- type: map_at_5 |
|
value: 1.185 |
|
- type: mrr_at_1 |
|
value: 0.0 |
|
- type: mrr_at_10 |
|
value: 0.0 |
|
- type: mrr_at_100 |
|
value: 0.0 |
|
- type: mrr_at_1000 |
|
value: 0.0 |
|
- type: mrr_at_3 |
|
value: 0.0 |
|
- type: mrr_at_5 |
|
value: 0.0 |
|
- type: ndcg_at_1 |
|
value: 91.0 |
|
- type: ndcg_at_10 |
|
value: 88.442 |
|
- type: ndcg_at_100 |
|
value: 71.39 |
|
- type: ndcg_at_1000 |
|
value: 64.153 |
|
- type: ndcg_at_3 |
|
value: 89.877 |
|
- type: ndcg_at_5 |
|
value: 89.562 |
|
- type: precision_at_1 |
|
value: 92.0 |
|
- type: precision_at_10 |
|
value: 92.60000000000001 |
|
- type: precision_at_100 |
|
value: 73.74000000000001 |
|
- type: precision_at_1000 |
|
value: 28.222 |
|
- type: precision_at_3 |
|
value: 94.0 |
|
- type: precision_at_5 |
|
value: 93.60000000000001 |
|
- type: recall_at_1 |
|
value: 0.23800000000000002 |
|
- type: recall_at_10 |
|
value: 2.428 |
|
- type: recall_at_100 |
|
value: 18.099999999999998 |
|
- type: recall_at_1000 |
|
value: 60.79599999999999 |
|
- type: recall_at_3 |
|
value: 0.749 |
|
- type: recall_at_5 |
|
value: 1.238 |
|
- type: main_score |
|
value: 88.442 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB Touche2020 |
|
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f |
|
split: test |
|
type: mteb/touche2020 |
|
metrics: |
|
- type: map_at_1 |
|
value: 3.4939999999999998 |
|
- type: map_at_10 |
|
value: 12.531999999999998 |
|
- type: map_at_100 |
|
value: 19.147 |
|
- type: map_at_1000 |
|
value: 20.861 |
|
- type: map_at_3 |
|
value: 7.558 |
|
- type: map_at_5 |
|
value: 9.49 |
|
- type: mrr_at_1 |
|
value: 0.0 |
|
- type: mrr_at_10 |
|
value: 0.0 |
|
- type: mrr_at_100 |
|
value: 0.0 |
|
- type: mrr_at_1000 |
|
value: 0.0 |
|
- type: mrr_at_3 |
|
value: 0.0 |
|
- type: mrr_at_5 |
|
value: 0.0 |
|
- type: ndcg_at_1 |
|
value: 47.959 |
|
- type: ndcg_at_10 |
|
value: 31.781 |
|
- type: ndcg_at_100 |
|
value: 42.131 |
|
- type: ndcg_at_1000 |
|
value: 53.493 |
|
- type: ndcg_at_3 |
|
value: 39.204 |
|
- type: ndcg_at_5 |
|
value: 34.635 |
|
- type: precision_at_1 |
|
value: 48.980000000000004 |
|
- type: precision_at_10 |
|
value: 27.143 |
|
- type: precision_at_100 |
|
value: 8.224 |
|
- type: precision_at_1000 |
|
value: 1.584 |
|
- type: precision_at_3 |
|
value: 38.775999999999996 |
|
- type: precision_at_5 |
|
value: 33.061 |
|
- type: recall_at_1 |
|
value: 3.4939999999999998 |
|
- type: recall_at_10 |
|
value: 18.895 |
|
- type: recall_at_100 |
|
value: 50.192 |
|
- type: recall_at_1000 |
|
value: 85.167 |
|
- type: recall_at_3 |
|
value: 8.703 |
|
- type: recall_at_5 |
|
value: 11.824 |
|
- type: main_score |
|
value: 31.781 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB ToxicConversationsClassification |
|
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de |
|
split: test |
|
type: mteb/toxic_conversations_50k |
|
metrics: |
|
- type: accuracy |
|
value: 92.7402 |
|
- type: accuracy_stderr |
|
value: 1.020764595781027 |
|
- type: ap |
|
value: 44.38594756333084 |
|
- type: ap_stderr |
|
value: 1.817150701258273 |
|
- type: f1 |
|
value: 79.95699280019547 |
|
- type: f1_stderr |
|
value: 1.334582498702029 |
|
- type: main_score |
|
value: 92.7402 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB TweetSentimentExtractionClassification |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
split: test |
|
type: mteb/tweet_sentiment_extraction |
|
metrics: |
|
- type: accuracy |
|
value: 80.86870401810978 |
|
- type: accuracy_stderr |
|
value: 0.22688467782004712 |
|
- type: f1 |
|
value: 81.1829040745744 |
|
- type: f1_stderr |
|
value: 0.19774920574849694 |
|
- type: main_score |
|
value: 80.86870401810978 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB TwentyNewsgroupsClustering |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
split: test |
|
type: mteb/twentynewsgroups-clustering |
|
metrics: |
|
- type: main_score |
|
value: 64.82048869927482 |
|
- type: v_measure |
|
value: 64.82048869927482 |
|
- type: v_measure_std |
|
value: 0.9170394252450564 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB TwitterSemEval2015 |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
split: test |
|
type: mteb/twittersemeval2015-pairclassification |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 88.44251057996067 |
|
- type: cos_sim_accuracy_threshold |
|
value: 70.2150285243988 |
|
- type: cos_sim_ap |
|
value: 81.11422351199913 |
|
- type: cos_sim_f1 |
|
value: 73.71062868615887 |
|
- type: cos_sim_f1_threshold |
|
value: 66.507488489151 |
|
- type: cos_sim_precision |
|
value: 70.2799712849964 |
|
- type: cos_sim_recall |
|
value: 77.4934036939314 |
|
- type: dot_accuracy |
|
value: 88.44251057996067 |
|
- type: dot_accuracy_threshold |
|
value: 70.2150285243988 |
|
- type: dot_ap |
|
value: 81.11420529068658 |
|
- type: dot_f1 |
|
value: 73.71062868615887 |
|
- type: dot_f1_threshold |
|
value: 66.50749444961548 |
|
- type: dot_precision |
|
value: 70.2799712849964 |
|
- type: dot_recall |
|
value: 77.4934036939314 |
|
- type: euclidean_accuracy |
|
value: 88.44251057996067 |
|
- type: euclidean_accuracy_threshold |
|
value: 77.18156576156616 |
|
- type: euclidean_ap |
|
value: 81.11422421732487 |
|
- type: euclidean_f1 |
|
value: 73.71062868615887 |
|
- type: euclidean_f1_threshold |
|
value: 81.84436559677124 |
|
- type: euclidean_precision |
|
value: 70.2799712849964 |
|
- type: euclidean_recall |
|
value: 77.4934036939314 |
|
- type: manhattan_accuracy |
|
value: 88.26369434344639 |
|
- type: manhattan_accuracy_threshold |
|
value: 3837.067413330078 |
|
- type: manhattan_ap |
|
value: 80.81442360477725 |
|
- type: manhattan_f1 |
|
value: 73.39883099117024 |
|
- type: manhattan_f1_threshold |
|
value: 4098.833847045898 |
|
- type: manhattan_precision |
|
value: 69.41896024464832 |
|
- type: manhattan_recall |
|
value: 77.86279683377309 |
|
- type: max_accuracy |
|
value: 88.44251057996067 |
|
- type: max_ap |
|
value: 81.11422421732487 |
|
- type: max_f1 |
|
value: 73.71062868615887 |
|
task: |
|
type: PairClassification |
|
- dataset: |
|
config: default |
|
name: MTEB TwitterURLCorpus |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
split: test |
|
type: mteb/twitterurlcorpus-pairclassification |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 90.03182365040556 |
|
- type: cos_sim_accuracy_threshold |
|
value: 64.46443796157837 |
|
- type: cos_sim_ap |
|
value: 87.86649113691112 |
|
- type: cos_sim_f1 |
|
value: 80.45644844577821 |
|
- type: cos_sim_f1_threshold |
|
value: 61.40774488449097 |
|
- type: cos_sim_precision |
|
value: 77.54052702992216 |
|
- type: cos_sim_recall |
|
value: 83.60024638127503 |
|
- type: dot_accuracy |
|
value: 90.03182365040556 |
|
- type: dot_accuracy_threshold |
|
value: 64.46444988250732 |
|
- type: dot_ap |
|
value: 87.86649011954319 |
|
- type: dot_f1 |
|
value: 80.45644844577821 |
|
- type: dot_f1_threshold |
|
value: 61.407750844955444 |
|
- type: dot_precision |
|
value: 77.54052702992216 |
|
- type: dot_recall |
|
value: 83.60024638127503 |
|
- type: euclidean_accuracy |
|
value: 90.03182365040556 |
|
- type: euclidean_accuracy_threshold |
|
value: 84.30368900299072 |
|
- type: euclidean_ap |
|
value: 87.86649114275045 |
|
- type: euclidean_f1 |
|
value: 80.45644844577821 |
|
- type: euclidean_f1_threshold |
|
value: 87.8547191619873 |
|
- type: euclidean_precision |
|
value: 77.54052702992216 |
|
- type: euclidean_recall |
|
value: 83.60024638127503 |
|
- type: manhattan_accuracy |
|
value: 89.99883572010712 |
|
- type: manhattan_accuracy_threshold |
|
value: 4206.838607788086 |
|
- type: manhattan_ap |
|
value: 87.8600826607838 |
|
- type: manhattan_f1 |
|
value: 80.44054508120217 |
|
- type: manhattan_f1_threshold |
|
value: 4372.755432128906 |
|
- type: manhattan_precision |
|
value: 78.08219178082192 |
|
- type: manhattan_recall |
|
value: 82.94579611949491 |
|
- type: max_accuracy |
|
value: 90.03182365040556 |
|
- type: max_ap |
|
value: 87.86649114275045 |
|
- type: max_f1 |
|
value: 80.45644844577821 |
|
task: |
|
type: PairClassification |
|
language: |
|
- en |
|
license: cc-by-nc-4.0 |
|
library_name: transformers |
|
--- |
|
## Introduction |
|
We present NV-Embed-v2, a generalist embedding model that ranks No. 1 on the Massive Text Embedding Benchmark ([MTEB benchmark](https://huggingface.co/spaces/mteb/leaderboard))(as of Aug 30, 2024) with a score of 72.31 across 56 text embedding tasks. It also holds the No. 1 in the retrieval sub-category (a score of 62.65 across 15 tasks) in the leaderboard, which is essential to the development of RAG technology. |
|
|
|
NV-Embed-v2 presents several new designs, including having the LLM attend to latent vectors for better pooled embedding output, and demonstrating a two-staged instruction tuning method to enhance the accuracy of both retrieval and non-retrieval tasks. Additionally, NV-Embed-v2 incorporates a novel hard-negative mining methods that take into account the positive relevance score for better false negatives removal. |
|
|
|
For more technical details, refer to our paper: [NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models](https://arxiv.org/pdf/2405.17428). |
|
|
|
## Model Details |
|
- Base Decoder-only LLM: [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) |
|
- Pooling Type: Latent-Attention |
|
- Embedding Dimension: 4096 |
|
|
|
## How to use |
|
|
|
Here is an example of how to encode queries and passages using Huggingface-transformer and Sentence-transformer. Please find the required package version [here](https://huggingface.co/nvidia/NV-Embed-v2#2-required-packages). |
|
|
|
### Usage (HuggingFace Transformers) |
|
|
|
```python |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
# Each query needs to be accompanied by an corresponding instruction describing the task. |
|
task_name_to_instruct = {"example": "Given a question, retrieve passages that answer the question",} |
|
|
|
query_prefix = "Instruct: "+task_name_to_instruct["example"]+"\nQuery: " |
|
queries = [ |
|
'are judo throws allowed in wrestling?', |
|
'how to become a radiology technician in michigan?' |
|
] |
|
|
|
# No instruction needed for retrieval passages |
|
passage_prefix = "" |
|
passages = [ |
|
"Since you're reading this, you are probably someone from a judo background or someone who is just wondering how judo techniques can be applied under wrestling rules. So without further ado, let's get to the question. Are Judo throws allowed in wrestling? Yes, judo throws are allowed in freestyle and folkstyle wrestling. You only need to be careful to follow the slam rules when executing judo throws. In wrestling, a slam is lifting and returning an opponent to the mat with unnecessary force.", |
|
"Below are the basic steps to becoming a radiologic technologist in Michigan:Earn a high school diploma. As with most careers in health care, a high school education is the first step to finding entry-level employment. Taking classes in math and science, such as anatomy, biology, chemistry, physiology, and physics, can help prepare students for their college studies and future careers.Earn an associate degree. Entry-level radiologic positions typically require at least an Associate of Applied Science. Before enrolling in one of these degree programs, students should make sure it has been properly accredited by the Joint Review Committee on Education in Radiologic Technology (JRCERT).Get licensed or certified in the state of Michigan." |
|
] |
|
|
|
# load model with tokenizer |
|
model = AutoModel.from_pretrained('nvidia/NV-Embed-v2', trust_remote_code=True) |
|
|
|
# get the embeddings |
|
max_length = 32768 |
|
query_embeddings = model.encode(queries, instruction=query_prefix, max_length=max_length) |
|
passage_embeddings = model.encode(passages, instruction=passage_prefix, max_length=max_length) |
|
|
|
# normalize embeddings |
|
query_embeddings = F.normalize(query_embeddings, p=2, dim=1) |
|
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=1) |
|
|
|
# get the embeddings with DataLoader (spliting the datasets into multiple mini-batches) |
|
# batch_size=2 |
|
# query_embeddings = model._do_encode(queries, batch_size=batch_size, instruction=query_prefix, max_length=max_length, num_workers=32, return_numpy=True) |
|
# passage_embeddings = model._do_encode(passages, batch_size=batch_size, instruction=passage_prefix, max_length=max_length, num_workers=32, return_numpy=True) |
|
|
|
scores = (query_embeddings @ passage_embeddings.T) * 100 |
|
print(scores.tolist()) |
|
# [[87.42693328857422, 0.46283677220344543], [0.965264618396759, 86.03721618652344]] |
|
``` |
|
|
|
|
|
### Usage (Sentence-Transformers) |
|
|
|
```python |
|
import torch |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Each query needs to be accompanied by an corresponding instruction describing the task. |
|
task_name_to_instruct = {"example": "Given a question, retrieve passages that answer the question",} |
|
|
|
query_prefix = "Instruct: "+task_name_to_instruct["example"]+"\nQuery: " |
|
queries = [ |
|
'are judo throws allowed in wrestling?', |
|
'how to become a radiology technician in michigan?' |
|
] |
|
|
|
# No instruction needed for retrieval passages |
|
passages = [ |
|
"Since you're reading this, you are probably someone from a judo background or someone who is just wondering how judo techniques can be applied under wrestling rules. So without further ado, let's get to the question. Are Judo throws allowed in wrestling? Yes, judo throws are allowed in freestyle and folkstyle wrestling. You only need to be careful to follow the slam rules when executing judo throws. In wrestling, a slam is lifting and returning an opponent to the mat with unnecessary force.", |
|
"Below are the basic steps to becoming a radiologic technologist in Michigan:Earn a high school diploma. As with most careers in health care, a high school education is the first step to finding entry-level employment. Taking classes in math and science, such as anatomy, biology, chemistry, physiology, and physics, can help prepare students for their college studies and future careers.Earn an associate degree. Entry-level radiologic positions typically require at least an Associate of Applied Science. Before enrolling in one of these degree programs, students should make sure it has been properly accredited by the Joint Review Committee on Education in Radiologic Technology (JRCERT).Get licensed or certified in the state of Michigan." |
|
] |
|
|
|
# load model with tokenizer |
|
model = SentenceTransformer('nvidia/NV-Embed-v2', trust_remote_code=True) |
|
model.max_seq_length = 32768 |
|
model.tokenizer.padding_side="right" |
|
|
|
def add_eos(input_examples): |
|
input_examples = [input_example + model.tokenizer.eos_token for input_example in input_examples] |
|
return input_examples |
|
|
|
# get the embeddings |
|
batch_size = 2 |
|
query_embeddings = model.encode(add_eos(queries), batch_size=batch_size, prompt=query_prefix, normalize_embeddings=True) |
|
passage_embeddings = model.encode(add_eos(passages), batch_size=batch_size, normalize_embeddings=True) |
|
|
|
scores = (query_embeddings @ passage_embeddings.T) * 100 |
|
print(scores.tolist()) |
|
``` |
|
|
|
### Usage (Infinity) |
|
|
|
Usage via [Infinity, MIT License](https://github.com/michaelfeil/infinity). |
|
```bash |
|
docker run -it --gpus all -v ./data:/app/.cache -p 7997:7997 michaelf34/infinity:0.0.70 \ |
|
v2 --model-id nvidia/NV-Embed-v2 --revision "refs/pr/23" --batch-size 8 |
|
``` |
|
|
|
## License |
|
This model should not be used for any commercial purpose. Refer the [license](https://spdx.org/licenses/CC-BY-NC-4.0) for the detailed terms. |
|
|
|
For commercial purpose, we recommend you to use the models of [NeMo Retriever Microservices (NIMs)](https://build.nvidia.com/explore/retrieval). |
|
|
|
|
|
## Correspondence to |
|
Chankyu Lee (chankyul@nvidia.com), Rajarshi Roy (rajarshir@nvidia.com), Wei Ping (wping@nvidia.com) |
|
|
|
|
|
## Citation |
|
If you find this code useful in your research, please consider citing: |
|
|
|
```bibtex |
|
@article{lee2024nv, |
|
title={NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models}, |
|
author={Lee, Chankyu and Roy, Rajarshi and Xu, Mengyao and Raiman, Jonathan and Shoeybi, Mohammad and Catanzaro, Bryan and Ping, Wei}, |
|
journal={arXiv preprint arXiv:2405.17428}, |
|
year={2024} |
|
} |
|
``` |
|
```bibtex |
|
@article{moreira2024nv, |
|
title={NV-Retriever: Improving text embedding models with effective hard-negative mining}, |
|
author={Moreira, Gabriel de Souza P and Osmulski, Radek and Xu, Mengyao and Ak, Ronay and Schifferer, Benedikt and Oldridge, Even}, |
|
journal={arXiv preprint arXiv:2407.15831}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
|
|
## Troubleshooting |
|
|
|
#### 1. Instruction template for MTEB benchmarks |
|
|
|
For MTEB sub-tasks for retrieval, STS, summarization, please use the instruction prefix template in [instructions.json](https://huggingface.co/nvidia/NV-Embed-v2/blob/main/instructions.json). For classification, clustering and reranking, please use the instructions provided in Table. 7 in [NV-Embed paper](https://arxiv.org/pdf/2405.17428). |
|
|
|
#### 2. Required Packages |
|
|
|
If you have trouble, try installing the python packages as below |
|
```python |
|
pip uninstall -y transformer-engine |
|
pip install torch==2.2.0 |
|
pip install transformers==4.42.4 |
|
pip install flash-attn==2.2.0 |
|
pip install sentence-transformers==2.7.0 |
|
``` |
|
|
|
#### 3. How to enable Multi-GPU (Note, this is the case for HuggingFace Transformers) |
|
```python |
|
from transformers import AutoModel |
|
from torch.nn import DataParallel |
|
|
|
embedding_model = AutoModel.from_pretrained("nvidia/NV-Embed-v2") |
|
for module_key, module in embedding_model._modules.items(): |
|
embedding_model._modules[module_key] = DataParallel(module) |
|
``` |
|
|
|
#### 4. Fixing "nvidia/NV-Embed-v2 is not the path to a directory containing a file named config.json" |
|
|
|
Switch to your local model path,and open config.json and change the value of **"_name_or_path"** and replace it with your local model path. |
|
|
|
|
|
#### 5. Access to model nvidia/NV-Embed-v2 is restricted. You must be authenticated to access it |
|
|
|
Use your huggingface access [token](https://huggingface.co/settings/tokens) to execute *"huggingface-cli login"*. |
|
|
|
#### 6. How to resolve slight mismatch in Sentence transformer results. |
|
|
|
A slight mismatch in the Sentence Transformer implementation is caused by a discrepancy in the calculation of the instruction prefix length within the Sentence Transformer package. |
|
|
|
To fix this issue, you need to build the Sentence Transformer package from source, making the necessary modification in this [line](https://github.com/UKPLab/sentence-transformers/blob/v2.7-release/sentence_transformers/SentenceTransformer.py#L353) as below. |
|
```python |
|
git clone https://github.com/UKPLab/sentence-transformers.git |
|
cd sentence-transformers |
|
git checkout v2.7-release |
|
# Modify L353 in SentenceTransformer.py to **'extra_features["prompt_length"] = tokenized_prompt["input_ids"].shape[-1]'**. |
|
pip install -e . |
|
``` |
|
|