File size: 2,430 Bytes
db40549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
988c610
db40549
 
 
 
 
 
 
 
 
d25a3d2
31f7840
 
db40549
 
 
 
31f7840
 
db40549
 
 
 
988c610
 
 
 
 
db40549
c1fddb0
 
db40549
 
 
 
 
31f7840
988c610
 
db40549
988c610
 
 
 
 
 
db40549
988c610
 
 
db40549
988c610
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import namedtuple
from typing import Optional

from timm.models import VisionTransformer
import torch
from transformers import PretrainedConfig, PreTrainedModel


from .model import create_model_from_args
from .model import RADIOModel as RADIOModelBase
from .input_conditioner import get_default_conditioner, InputConditioner


class RADIOConfig(PretrainedConfig):
    """Pretrained Hugging Face configuration for RADIO models."""

    def __init__(
        self,
        args: Optional[dict] = None,
        version: Optional[str] = "v1",
        return_summary: Optional[bool] = True,
        return_spatial_features: Optional[bool] = True,
        **kwargs,
    ):
        self.args = args
        self.version = version
        self.return_summary = return_summary
        self.return_spatial_features = return_spatial_features
        super().__init__(**kwargs)


class RADIOModel(PreTrainedModel):
    """Pretrained Hugging Face model for RADIO.

    This classes inherits from both PreTrainedModel, which provides
    HuggingFace's functionality for loading and saving models.
    """

    config_class = RADIOConfig

    def __init__(self, config):
        super().__init__(config)

        RADIOArgs = namedtuple("RADIOArgs", config.args.keys())
        args = RADIOArgs(**config.args)
        self.config = config
        model = create_model_from_args(args)
        input_conditioner: InputConditioner = get_default_conditioner()

        self.radio_model = RADIOModelBase(
            model,
            input_conditioner,
            config.return_summary,
            config.return_spatial_features,
        )

    @property
    def model(self) -> VisionTransformer:
        return self.radio_model.model

    def forward(self, x: torch.Tensor):
        return self.radio_model.forward(x)