odelz's picture
End of training
b50b481 verified
|
raw
history blame
3.6 kB
metadata
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: hindi_fb1mms_timebalancedreg
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.4259275985404097

hindi_fb1mms_timebalancedreg

This model is a fine-tuned version of facebook/mms-1b-all on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7182
  • Wer: 0.4259

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.087 1.0191 400 3.5884 0.9998
3.935 2.0382 800 3.4190 0.9959
3.3712 3.0573 1200 3.3003 0.9709
3.2027 4.0764 1600 2.8687 0.9861
1.4667 5.0955 2000 0.6547 0.4129
1.2468 6.1146 2400 0.6031 0.3955
1.2401 7.1338 2800 0.6334 0.4172
1.2952 8.1529 3200 0.6857 0.4238
1.2466 9.1720 3600 0.7279 0.4361
1.2094 10.1911 4000 0.6768 0.4140
1.1764 11.2102 4400 0.6735 0.4234
1.1491 12.2293 4800 0.7047 0.4334
1.1504 13.2484 5200 0.6704 0.4215
1.1656 14.2675 5600 0.6684 0.4207
1.1666 15.2866 6000 0.7367 0.4339
1.1512 16.3057 6400 0.7384 0.4386
1.1646 17.3248 6800 0.7087 0.4251
1.1407 18.3439 7200 0.7192 0.4329
1.1207 19.3631 7600 0.7141 0.4236
1.1145 20.3822 8000 0.7503 0.4374
1.1138 21.4013 8400 0.7235 0.4278
1.1091 22.4204 8800 0.7468 0.4404
1.1255 23.4395 9200 0.7177 0.4264
1.0959 24.4586 9600 0.7050 0.4191
1.106 25.4777 10000 0.7420 0.4337
1.0949 26.4968 10400 0.7063 0.4223
1.1142 27.5159 10800 0.7170 0.4257
1.1076 28.5350 11200 0.7223 0.4267
1.1028 29.5541 11600 0.7182 0.4259

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1