|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv3-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cord-layoutlmv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cord_100 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cord-layoutlmv3 |
|
type: cord-layoutlmv3 |
|
config: cord |
|
split: test |
|
args: cord |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.596078431372549 |
|
- name: Recall |
|
type: recall |
|
value: 0.6826347305389222 |
|
- name: F1 |
|
type: f1 |
|
value: 0.636427076064201 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.684634974533107 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cord_100 |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9357 |
|
- Precision: 0.5961 |
|
- Recall: 0.6826 |
|
- F1: 0.6364 |
|
- Accuracy: 0.6846 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 250.0 | 250 | 1.5298 | 0.5778 | 0.6781 | 0.6240 | 0.6825 | |
|
| 0.6654 | 500.0 | 500 | 1.6175 | 0.5942 | 0.6849 | 0.6363 | 0.6880 | |
|
| 0.6654 | 750.0 | 750 | 1.7087 | 0.5947 | 0.6841 | 0.6363 | 0.6876 | |
|
| 0.0208 | 1000.0 | 1000 | 1.7729 | 0.5948 | 0.6834 | 0.6360 | 0.6859 | |
|
| 0.0208 | 1250.0 | 1250 | 1.8273 | 0.5949 | 0.6826 | 0.6358 | 0.6851 | |
|
| 0.0099 | 1500.0 | 1500 | 1.8693 | 0.5957 | 0.6826 | 0.6362 | 0.6846 | |
|
| 0.0099 | 1750.0 | 1750 | 1.8969 | 0.5950 | 0.6819 | 0.6355 | 0.6842 | |
|
| 0.0066 | 2000.0 | 2000 | 1.9196 | 0.5972 | 0.6826 | 0.6371 | 0.6842 | |
|
| 0.0066 | 2250.0 | 2250 | 1.9312 | 0.5946 | 0.6819 | 0.6353 | 0.6838 | |
|
| 0.0054 | 2500.0 | 2500 | 1.9357 | 0.5961 | 0.6826 | 0.6364 | 0.6846 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|