metadata
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- autotrain
base_model: nomic-ai/nomic-embed-text-v1.5
widget:
- source_sentence: 'search_query: i love autotrain'
sentences:
- 'search_query: huggingface auto train'
- 'search_query: hugging face auto train'
- 'search_query: i love autotrain'
pipeline_tag: sentence-similarity
Model Trained Using AutoTrain
- Problem type: Sentence Transformers
Validation Metrics
loss: 0.0011504614958539605
runtime: 12.6072
samples_per_second: 112.396
steps_per_second: 7.059
: 3.0
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the Hugging Face Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'search_query: autotrain',
'search_query: auto train',
'search_query: i love autotrain',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)