onarganogun's picture
End of training
aae67b1 verified
metadata
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base-finetuned-kinetics
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: videomae-base-finetuned-kinetics-fight_18-03-2024
    results: []

videomae-base-finetuned-kinetics-fight_18-03-2024

This model is a fine-tuned version of MCG-NJU/videomae-base-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2211
  • Accuracy: 0.9175
  • Precision: 0.9372
  • Recall: 0.895

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 2660

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall
0.7318 0.05 134 0.7169 0.43 0.4247 0.395
0.6646 1.05 268 0.6636 0.59 0.6139 0.485
0.6089 2.05 402 0.5944 0.78 0.8415 0.69
0.5485 3.05 536 0.5270 0.845 0.8920 0.785
0.4581 4.05 670 0.4630 0.865 0.9011 0.82
0.3436 5.05 804 0.3994 0.8725 0.9162 0.82
0.3109 6.05 938 0.3530 0.8775 0.9171 0.83
0.2672 7.05 1072 0.3212 0.88 0.9176 0.835
0.2243 8.05 1206 0.2947 0.895 0.9202 0.865
0.297 9.05 1340 0.2779 0.895 0.9202 0.865
0.21 10.05 1474 0.2615 0.9025 0.9215 0.88
0.2003 11.05 1608 0.2515 0.895 0.9202 0.865
0.2128 12.05 1742 0.2418 0.91 0.9271 0.89
0.1789 13.05 1876 0.2357 0.9125 0.9275 0.895
0.1672 14.05 2010 0.2300 0.91 0.9227 0.895
0.1532 15.05 2144 0.2275 0.9175 0.9372 0.895
0.1695 16.05 2278 0.2241 0.9125 0.9275 0.895
0.1255 17.05 2412 0.2225 0.915 0.9323 0.895
0.1168 18.05 2546 0.2214 0.9175 0.9372 0.895
0.1395 19.04 2660 0.2211 0.9175 0.9372 0.895

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.2