Edit model card

tinyllama_moe_sft_ultrachat-slimorca

This model is a fine-tuned version of ondevicellm/tinyllama_moe on the HuggingFaceH4/ultrachat_200k and the ondevicellm/SlimOrca datasets. It achieves the following results on the evaluation set:

  • Loss: 1.1526

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 120
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.4601 0.05 100 1.3361
1.3324 0.1 200 1.2566
1.2946 0.14 300 1.2279
1.2767 0.19 400 1.2111
1.2298 0.24 500 1.1995
1.2247 0.29 600 1.1902
1.2208 0.34 700 1.1833
1.2375 0.39 800 1.1775
1.2038 0.43 900 1.1726
1.1926 0.48 1000 1.1683
1.1933 0.53 1100 1.1649
1.1893 0.58 1200 1.1618
1.2029 0.63 1300 1.1593
1.2201 0.68 1400 1.1572
1.1741 0.72 1500 1.1557
1.1813 0.77 1600 1.1545
1.1668 0.82 1700 1.1536
1.1495 0.87 1800 1.1530
1.1595 0.92 1900 1.1527
1.1607 0.97 2000 1.1526

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
10
Safetensors
Model size
6.43B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ondevicellm/tinyllama_moe_sft_ultrachat-slimorca

Finetuned
(4)
this model

Datasets used to train ondevicellm/tinyllama_moe_sft_ultrachat-slimorca