LDCC-SOLAR-gugutypus-10.7B
Model Details
Model Developers
- DongGeon Lee (oneonlee)
Model Architecture
- LDCC-SOLAR-gugutypus-10.7B is a instruction fine-tuned auto-regressive language model, based on the SOLAR transformer architecture.
Base Model
Training Dataset
Model comparisons
- Ko-LLM leaderboard (2024/03/01) [link]
Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|---|
oneonlee/KoSOLAR-v0.2-gugutypus-10.7B | 51.17 | 47.78 | 58.29 | 47.27 | 48.31 | 54.19 |
oneonlee/LDCC-SOLAR-gugutypus-10.7B | 49.45 | 45.9 | 55.46 | 47.96 | 48.93 | 49 |
- (KOR) AI-Harness evaluation [link]
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
KMMLU | N/A | none | 0 | acc | 0.3329 | ± | 0.0794 |
KMMLU | N/A | none | 5 | acc | 0.3969 | ± | 0.0816 |
KoBEST-HellaSwag | 0 | none | 0 | acc | 0.4260 | ± | 0.0221 |
KoBEST-HellaSwag | 0 | none | 5 | acc | 0.4260 | ± | 0.0221 |
KoBEST-BoolQ | 0 | none | 0 | acc | 0.7792 | ± | 0.0111 |
KoBEST-BoolQ | 0 | none | 5 | acc | 0.8925 | ± | 0.0083 |
KoBEST-COPA | 0 | none | 0 | acc | 0.6670 | ± | 0.0149 |
KoBEST-COPA | 0 | none | 5 | acc | 0.7070 | ± | 0.0144 |
KoBEST-SentiNeg | 0 | none | 0 | acc | 0.7582 | ± | 0.0215 |
KoBEST-SentiNeg | 0 | none | 5 | acc | 0.9219 | ± | 0.0135 |
- (ENG) AI-Harness evaluation [link]
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
MMLU | N/A | none | 0 | acc | 0.5826 | ± | 0.1432 |
MMLU | N/A | none | 5 | acc | 0.6124 | ± | 0.1275 |
HellaSwag | 1 | none | 0 | acc | 0.6075 | ± | 0.0049 |
HellaSwag | 1 | none | 5 | acc | 0.6534 | ± | 0.0047 |
BoolQ | 2 | none | 0 | acc | 0.8737 | ± | 0.0058 |
BoolQ | 2 | none | 5 | acc | 0.8878 | ± | 0.0055 |
COPA | 1 | none | 0 | acc | 0.8300 | ± | 0.0378 |
COPA | 1 | none | 5 | acc | 0.9300 | ± | 0.0256 |
truthfulqa | N/A | none | 0 | acc | 0.4249 | ± | 0.0023 |
truthfulqa | N/A | none | 5 | acc | - | ± | - |
Implementation Code
### LDCC-SOLAR-gugutypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "oneonlee/LDCC-SOLAR-gugutypus-10.7B"
model = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
tokenizer = AutoTokenizer.from_pretrained(repo)
- Downloads last month
- 1,669
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.