https://huggingface.co/jmtzt/ijepa_vitg16_22k with ONNX weights to be compatible with Transformers.js.
Usage (Transformers.js)
If you haven't already, you can install the Transformers.js JavaScript library from NPM using:
npm i @huggingface/transformers
Example: Image feature extraction with onnx-community/ijepa_vitg16_22k
.
import { pipeline, cos_sim } from "@huggingface/transformers";
// Create an image feature extraction pipeline
const extractor = await pipeline(
"image-feature-extraction",
"onnx-community/ijepa_vitg16_22k",
{ dtype: "q8" },
);
// Compute image embeddings
const url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
const url_2 = "http://images.cocodataset.org/val2017/000000219578.jpg"
const output = await extractor([url_1, url_2]);
const pooled_output = output.mean(1); // Apply mean pooling
// Compute cosine similarity
const similarity = cos_sim(pooled_output[0].data, pooled_output[1].data);
console.log(similarity); // 0.4707813467804588
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using 🤗 Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx
).
- Downloads last month
- 36
Inference API (serverless) does not yet support transformers.js models for this pipeline type.
Model tree for onnx-community/ijepa_vitg16_22k
Base model
facebook/ijepa_vitg16_22k