https://huggingface.co/pyannote/segmentation-3.0 with ONNX weights to be compatible with Transformers.js.
Transformers.js (v3) usage
import { AutoProcessor, AutoModelForAudioFrameClassification, read_audio } from '@xenova/transformers';
// Load model and processor
const model_id = 'onnx-community/pyannote-segmentation-3.0';
const model = await AutoModelForAudioFrameClassification.from_pretrained(model_id);
const processor = await AutoProcessor.from_pretrained(model_id);
// Read and preprocess audio
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/mlk.wav';
const audio = await read_audio(url, processor.feature_extractor.config.sampling_rate);
const inputs = await processor(audio);
// Run model with inputs
const { logits } = await model(inputs);
// {
// logits: Tensor {
// dims: [ 1, 767, 7 ], // [batch_size, num_frames, num_classes]
// type: 'float32',
// data: Float32Array(5369) [ ... ],
// size: 5369
// }
// }
const result = processor.post_process_speaker_diarization(logits, audio.length);
// [
// [
// { id: 0, start: 0, end: 1.0512535626298245, confidence: 0.8220156481664611 },
// { id: 2, start: 1.0512535626298245, end: 2.3398869619825127, confidence: 0.9008811707860472 },
// ...
// ]
// ]
// Display result
console.table(result[0], ['start', 'end', 'id', 'confidence']);
// βββββββββββ¬βββββββββββββββββββββ¬βββββββββββββββββββββ¬βββββ¬ββββββββββββββββββββββ
// β (index) β start β end β id β confidence β
// βββββββββββΌβββββββββββββββββββββΌβββββββββββββββββββββΌβββββΌββββββββββββββββββββββ€
// β 0 β 0 β 1.0512535626298245 β 0 β 0.8220156481664611 β
// β 1 β 1.0512535626298245 β 2.3398869619825127 β 2 β 0.9008811707860472 β
// β 2 β 2.3398869619825127 β 3.5946089560890773 β 0 β 0.7521651315796233 β
// β 3 β 3.5946089560890773 β 4.578039708226655 β 2 β 0.8491978128022479 β
// β 4 β 4.578039708226655 β 4.594995410849717 β 0 β 0.2935352600416393 β
// β 5 β 4.594995410849717 β 6.121008646925269 β 3 β 0.6788051309866024 β
// β 6 β 6.121008646925269 β 6.256654267909762 β 0 β 0.37125512393851134 β
// β 7 β 6.256654267909762 β 8.630452635138397 β 2 β 0.7467035186353542 β
// β 8 β 8.630452635138397 β 10.088643060721703 β 0 β 0.7689364814666032 β
// β 9 β 10.088643060721703 β 12.58113134631177 β 2 β 0.9123324509131324 β
// β 10 β 12.58113134631177 β 13.005023911888312 β 0 β 0.4828358177572041 β
// βββββββββββ΄βββββββββββββββββββββ΄βββββββββββββββββββββ΄βββββ΄ββββββββββββββββββββββ
Torch β ONNX conversion code:
# pip install torch onnx https://github.com/pyannote/pyannote-audio/archive/refs/heads/develop.zip
import torch
from pyannote.audio import Model
model = Model.from_pretrained(
"pyannote/segmentation-3.0",
use_auth_token="hf_...", # <-- Set your HF token here
).eval()
dummy_input = torch.zeros(2, 1, 160000)
torch.onnx.export(
model,
dummy_input,
'model.onnx',
do_constant_folding=True,
input_names=["input_values"],
output_names=["logits"],
dynamic_axes={
"input_values": {0: "batch_size", 1: "num_channels", 2: "num_samples"},
"logits": {0: "batch_size", 1: "num_frames"},
},
)
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using π€ Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx
).
- Downloads last month
- 1,438
Model tree for onnx-community/pyannote-segmentation-3.0
Base model
pyannote/segmentation-3.0