Edit model card

MiniCPM-V 2.6 int4

This is the int4 quantized version of MiniCPM-V 2.6.
Running with int4 version would use lower GPU memory (about 7GB).

Usage

Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.10:

Pillow==10.1.0
torch==2.1.2
torchvision==0.16.2
transformers==4.40.0
sentencepiece==0.1.99
accelerate==0.30.1
bitsandbytes==0.43.1
# test.py
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer

model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2_6-int4', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6-int4', trust_remote_code=True)
model.eval()

image = Image.open('xx.jpg').convert('RGB')
question = 'What is in the image?'
msgs = [{'role': 'user', 'content': [image, question]}]

res = model.chat(
    image=None,
    msgs=msgs,
    tokenizer=tokenizer
)
print(res)

## if you want to use streaming, please make sure sampling=True and stream=True
## the model.chat will return a generator
res = model.chat(
    image=None,
    msgs=msgs,
    tokenizer=tokenizer,
    sampling=True,
    temperature=0.7,
    stream=True
)

generated_text = ""
for new_text in res:
    generated_text += new_text
    print(new_text, flush=True, end='')
Downloads last month
71,189
Safetensors
Model size
4.76B params
Tensor type
F32
·
BF16
·
U8
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Dataset used to train openbmb/MiniCPM-V-2_6-int4

Space using openbmb/MiniCPM-V-2_6-int4 1

Collections including openbmb/MiniCPM-V-2_6-int4