|
--- |
|
license: mit |
|
language: |
|
- ja |
|
--- |
|
|
|
|
|
# Overview |
|
|
|
This model generates text like viewer comments in live streaming, such as Youtube Live. |
|
|
|
This model was trained on [rinna/japanese-gpt-neox-3.6b-instruction-ppo](https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-ppo) using Lora. |
|
|
|
# How to use the model |
|
|
|
~~~~python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b-instruction-ppo", use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt-neox-3.6b-instruction-ppo", torch_dtype=torch.float16, device_map="auto") |
|
|
|
from peft import PeftModel |
|
peft_model = PeftModel.from_pretrained(model, "oshizo/comment-generation-japanese-3.6b-lora", device_map="auto") |
|
|
|
|
|
prompt = f"ユーザー: 今朝うちの小さな畑でトマトがね、いい感じに赤くなってたんだよね。そのまま通学路を歩いてたんだけどさ、一つちぎって弁当に入れておけば良かっな~と思って。トマト可愛くて好き。<NL>システム: " |
|
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
output_ids = model.generate( |
|
token_ids.to(model.device), |
|
do_sample=True, |
|
max_new_tokens=32, |
|
num_return_sequences=4, |
|
pad_token_id=tokenizer.pad_token_id, |
|
bos_token_id=tokenizer.bos_token_id, |
|
eos_token_id=tokenizer.eos_token_id |
|
) |
|
for output in output_ids.tolist(): |
|
print(tokenizer.decode(output[token_ids.size(1):], skip_special_tokens=True)) |
|
|
|
# これから剥くの面倒くさいよ<NL> |
|
# なんやその可愛い好きは<NL> |
|
# 冷やしておくと美味しいよな<NL> |
|
# 食レポ具体的に<NL> |
|
~~~~ |
|
|
|
|
|
|
|
|