Edit model card

arch_sktechs_flux_lora_v1

This is a LyCORIS adapter derived from black-forest-labs/FLUX.1-dev.

The main validation prompt used during training was:

an architectural sketch of a modern architecture, concrete, two stories, gray, windows, urban landscape, cultural building, side view, geometric shape, clean lines, flat roof, minimalistic design, public space, large mass, dominant volume, no visible vegetation, straight edges, sleek facade

Validation settings

  • CFG: 3.0
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
an architectural sketch of a modern architecture, concrete, two stories, gray, windows, urban landscape, cultural building, side view, geometric shape, clean lines, flat roof, minimalistic design, public space, large mass, dominant volume, no visible vegetation, straight edges, sleek facade
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 0
  • Training steps: 5000
  • Learning rate: 0.0001
  • Effective batch size: 1
    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: adamw_bf16
  • Precision: Pure BF16
  • Quantised: No
  • Xformers: Not used
  • LyCORIS Config:
{
    "algo": "lokr",
    "multiplier": 1.0,
    "linear_dim": 15000,
    "linear_alpha": 2,
    "factor": 4,
    "apply_preset": {
        "target_module": [
            "Attention",
            "FeedForward"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 4
            },
            "FeedForward": {
                "factor": 4
            }
        }
    }
}

Datasets

img-512

  • Repeats: 10
  • Total number of images: 114
  • Total number of aspect buckets: 1
  • Resolution: 0.262144 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

img-1024

  • Repeats: 10
  • Total number of images: 114
  • Total number of aspect buckets: 14
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

img-512-crop

  • Repeats: 10
  • Total number of images: 114
  • Total number of aspect buckets: 1
  • Resolution: 0.262144 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: square

img-1024-crop

  • Repeats: 10
  • Total number of images: 114
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: square

Inference

import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights

model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()

prompt = "an architectural sketch of a modern architecture, concrete, two stories, gray, windows, urban landscape, cultural building, side view, geometric shape, clean lines, flat roof, minimalistic design, public space, large mass, dominant volume, no visible vegetation, straight edges, sleek facade"

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
9
Inference API
Examples

Model tree for ossaili/arch_sktechs_flux_lora_v1

Adapter
(9807)
this model