phi-3-mini-QLoRA
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4826
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8441 | 0.2930 | 1000 | 0.6059 |
0.5806 | 0.5859 | 2000 | 0.5601 |
0.5509 | 0.8789 | 3000 | 0.5371 |
0.5293 | 1.1718 | 4000 | 0.5231 |
0.5187 | 1.4648 | 5000 | 0.5121 |
0.5066 | 1.7577 | 6000 | 0.5041 |
0.501 | 2.0507 | 7000 | 0.4988 |
0.4904 | 2.3436 | 8000 | 0.4938 |
0.4889 | 2.6366 | 9000 | 0.4903 |
0.4871 | 2.9295 | 10000 | 0.4871 |
0.4823 | 3.2225 | 11000 | 0.4852 |
0.4759 | 3.5155 | 12000 | 0.4837 |
0.4756 | 3.8084 | 13000 | 0.4826 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for ostapbodnar/Phi3-mini-4k-instruct-UA-adapter
Base model
microsoft/Phi-3-mini-4k-instruct