any系をACertaintyベースで再現したモデルです。
▼使用モデル
- ACertainty.ckpt
- bp_1024_e10.ckpt
- instagram-latest-plus-clip-v6e1_50000.safetensors
- Bra6-2(beta).safetensors
- dreamshaper_631BakedVae.safetensors
ほとんどテストしてないので使いにくかったらマージしたりしてください。
蒸留画像は使用していません。下記のレポジトリからデータセットのキャプションのみダウンロードできます。
DataSet: https://huggingface.co/datasets/paimonimpact/ONN
ONN_anyV3.fp16.safetensors
- ACertainty.ckpt
- bp_1024_e10.ckpt
ACertaintyにany_A ~ FのデータセットでDB。
Model: A | Model: B | Weight | Base alpha | Merge Name |
---|---|---|---|---|
A | C | - | 0.3 | AC |
B | E | - | 0.5 | BE |
D | F | - | 0.5 | DF |
BE | DF | 0.0,0.0,0.1,0.3,0.5,0.7,1.0,0.7,0.5,0.3,0.1,0.0,0.0,0.0,0.1,0.3,0.5,0.7,0.5,0.3,0.1,0.0,0.0,0.0,0.0 | 0.3 | BEDF |
BEDF | AC | 1.0,0.9,0.7,0.5,0.3,0.1,0.3,0.3,0.3,0.3,0.3,0.3,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.1,0.3,0.5,0.7,0.9,1.0 | 0.3 | BEDFAC |
BEDFAC | bp_1024_e10 | - | 0.15 | ONN_anyV3 |
ONN_AOM2.fp16.safetensors
- ONN_anyV3.fp16.safetensors
- Bra6-2(beta).safetensors
- instagram-latest-plus-clip-v6e1_50000.safetensors
- dreamshaper_631BakedVae.safetensors
Model: A | Model: B | Weight | Base alpha | Merge Name |
---|---|---|---|---|
instagram-latest-plus-clip-v6e1_50000 | Bra6-2(beta) | 0,0.0,0.0,0.0,0.0,0.1,0.3,0.5,0.7,0.5,0.3,0.1,0.0,0.0,0.1,0.3,0.5,0.7,0.9,0.7,0.5,0.3,0.1,0.1,0.0,0.0 | 0(cosineB) | insta_bra |
Model: A | Model: B | Model: C | Interpolation Method | Merge Name |
---|---|---|---|---|
insta_bra | dreamshaper_631BakedVae | v1-5-pruned | Add Difference @ 0.7 | onn_real |
Model: A | Model: B | Weight | Base alpha | Merge Name |
---|---|---|---|---|
ONN_anyV3 | onn_real | 0,1.0,0.9,0.7,0.5,0.3,0.1,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.1,0.3,0.5,0.7,0.9,1.0 | 0 | ONN_AOM2 |
ONN_anyV4.fp16.safetensors
- ACertainty.ckpt
- ONN_AOM2.fp16.safetensors
- ACertaintyをanyV4.zipのデータセットでFT = FT_ACertainty
- ONN_AOM2と単純マージ
Model: A Model: B Base alpha Merge Name FT_ACertainty ONN_AOM2 0.5 ONN_anyV4
ONN_pastel.fp16.safetensors
- bp_1024_e10.ckpt
- ONN_AOM2.fp16.safetensors
- onn_real.fp16.safetensors
- dreamshaper_631BakedVae.safetensors
pastel_A ~ EのデータセットでLoRaを5つ作成(学習モデルはACertainty) = onnpastelLoRaA~E
ONN_AOM2とpastelLoRAをマージ
Model Lora Weight Merge Name ONN_AOM2 onnpastelLoRaA 0.8 onnpastel_baseA onnpastel_baseAとbp_1024_e10.ckptをマージ
Model: A Model: B Base alpha Merge Name onnpastel_baseA bp_1024_e1 0.5 onnpastel_baseB ACertaintyをany_C.zipのデータセットでFT = onnpastel_baseC
onnpastel_baseBとonnpastel_baseCをマージ
Model: A Model: B Base alpha Merge Name onnpastel_baseB onnpastel_baseC 0.5 onnpastel_baseBC onnpastel_baseBCとonn_realをマージ
Model: A Model: B Weight Base alpha Merge Name onnpastel_baseBC onn_real 1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 0 onnpastel 各種LoRAをマージ
Model Lora Weight Merge Name onnpastel onnpastelLoRaB 0.2 onnpastel-1 onnpastel-1 onnpastelLoRaC 0.3 onnpastel-2 onnpastel-2 onnpastelLoRaE 0.6 onnpastel-3 調整用モデルの作成、マージ
Model: A Model: B Weight Base alpha Merge Name onnpastel_baseC dreamshaper_631BakedVae 0.7,0.5,0.3,0.1,0,0,0,0,0,0,0,0,0.5,0,0,0,0,0,0,0,0,0.1,0.3,0.5,0.7 0 onnpastel_baseC-1
Model | Lora | Weight | Merge Name |
---|---|---|---|
onnpastel_baseC-1 | onnpastelLoRaA | 0.8 | onnpastel_baseC-2 |
Model: A | Model: B | Weight | Base alpha | Merge Name |
---|---|---|---|---|
onnpastel-3 | onnpastel_baseC-2 | 0,0.7,0.5,0.3,0.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1,0.3,0.5,0.7 | 0 | onnpastel-4 |
- LoRAをマージ
Model Lora Weight Merge Name onnpastel-4 onnpastelLoRaD 0.7 ONN_pastel