metadata
language:
- en
license: llama3
library_name: transformers
pipeline_tag: text2text-generation
model-index:
- name: orca_mini_v6_8b_dpo
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 38.83
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v6_8b_dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 32.48
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v6_8b_dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 5.51
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v6_8b_dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.82
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v6_8b_dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.26
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v6_8b_dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 28.85
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v6_8b_dpo
name: Open LLM Leaderboard
Model Name: Llama 3 orca_mini_v6_8b_dpo
Llama 3 orca_mini_v6_8b_dpo is trained with various DPO Datasets
Passionate about Generative AI? I help companies to privately train and deploy custom LLM/MLLM affordably. For startups, I can even assist with securing GPU grants to get you started. Let's chat!https://www.linkedin.com/in/pankajam Looking forward to connecting!
NOTICE
By providing proper credit and attribution, you are granted permission to use this model as a foundational base for further Full fine tuning, DPO, PPO or ORPO tuning and any kind of Merges. I actively encourage users to customize and enhance the model according to their specific needs, as this version is designed to be a comprehensive general model. Dive in and innovate!
Evaluation
Coming Soon..
Example Usage
Here is the ChatML prompt format
<|im_start|>system
You are Orca Mini, a helpful AI assistant.<|im_end|>
<|im_start|>user
Hello Orca Mini, what can you do for me?<|im_end|>
<|im_start|>assistant
Below shows a code example on how to use this model
from transformers import AutoModel, AutoTokenizer
model_slug = "pankajmathur/orca_mini_v6_8b_dpo"
model = AutoModel.from_pretrained(model_slug)
tokenizer = AutoTokenizer.from_pretrained(model_slug)
messages = [
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
]
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
model.generate(**gen_input)
This model is governed by META LLAMA 3 COMMUNITY LICENSE AGREEMENT
Quants
GGUF : Coming Soon
AWQ: Coming Soon
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 20.29 |
IFEval (0-Shot) | 38.83 |
BBH (3-Shot) | 32.48 |
MATH Lvl 5 (4-Shot) | 5.51 |
GPQA (0-shot) | 6.82 |
MuSR (0-shot) | 9.26 |
MMLU-PRO (5-shot) | 28.85 |