BGE base BioASQ Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pavanmantha/bge-base-en-bioembed768")
# Run inference
sentences = [
"Basset is an open source package which applies CNNs to learn the functional activity of DNA sequences from genomics data. Basset was trained on a compendium of accessible genomic sites mapped in 164 cell types by DNase-seq, and demonstrated greater predictive accuracy than previous methods. Basset predictions for the change in accessibility between variant alleles were far greater for Genome-wide association study (GWAS) SNPs that are likely to be causal relative to nearby SNPs in linkage disequilibrium with them. With Basset, a researcher can perform a single sequencing assay in their cell type of interest and simultaneously learn that cell's chromatin accessibility code and annotate every mutation in the genome with its influence on present accessibility and latent potential for accessibility. Thus, Basset offers a powerful computational approach to annotate and interpret the noncoding genome.",
'Describe the applicability of Basset in the context of deep learning',
'What is the causative agent of the "Panama disease" affecting bananas?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8432 |
cosine_accuracy@3 | 0.9428 |
cosine_accuracy@5 | 0.9619 |
cosine_accuracy@10 | 0.9788 |
cosine_precision@1 | 0.8432 |
cosine_precision@3 | 0.3143 |
cosine_precision@5 | 0.1924 |
cosine_precision@10 | 0.0979 |
cosine_recall@1 | 0.8432 |
cosine_recall@3 | 0.9428 |
cosine_recall@5 | 0.9619 |
cosine_recall@10 | 0.9788 |
cosine_ndcg@10 | 0.9168 |
cosine_mrr@10 | 0.8963 |
cosine_map@100 | 0.8972 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8538 |
cosine_accuracy@3 | 0.9428 |
cosine_accuracy@5 | 0.9619 |
cosine_accuracy@10 | 0.9746 |
cosine_precision@1 | 0.8538 |
cosine_precision@3 | 0.3143 |
cosine_precision@5 | 0.1924 |
cosine_precision@10 | 0.0975 |
cosine_recall@1 | 0.8538 |
cosine_recall@3 | 0.9428 |
cosine_recall@5 | 0.9619 |
cosine_recall@10 | 0.9746 |
cosine_ndcg@10 | 0.9198 |
cosine_mrr@10 | 0.9017 |
cosine_map@100 | 0.9027 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8453 |
cosine_accuracy@3 | 0.9386 |
cosine_accuracy@5 | 0.9555 |
cosine_accuracy@10 | 0.9746 |
cosine_precision@1 | 0.8453 |
cosine_precision@3 | 0.3129 |
cosine_precision@5 | 0.1911 |
cosine_precision@10 | 0.0975 |
cosine_recall@1 | 0.8453 |
cosine_recall@3 | 0.9386 |
cosine_recall@5 | 0.9555 |
cosine_recall@10 | 0.9746 |
cosine_ndcg@10 | 0.9142 |
cosine_mrr@10 | 0.8945 |
cosine_map@100 | 0.8953 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.822 |
cosine_accuracy@3 | 0.928 |
cosine_accuracy@5 | 0.9449 |
cosine_accuracy@10 | 0.9703 |
cosine_precision@1 | 0.822 |
cosine_precision@3 | 0.3093 |
cosine_precision@5 | 0.189 |
cosine_precision@10 | 0.097 |
cosine_recall@1 | 0.822 |
cosine_recall@3 | 0.928 |
cosine_recall@5 | 0.9449 |
cosine_recall@10 | 0.9703 |
cosine_ndcg@10 | 0.9015 |
cosine_mrr@10 | 0.879 |
cosine_map@100 | 0.8801 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,247 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 3 tokens
- mean: 102.44 tokens
- max: 512 tokens
- min: 5 tokens
- mean: 15.78 tokens
- max: 44 tokens
- Samples:
positive anchor Restless legs syndrome (RLS), also known as Willis-Ekbom disease (WED), is a common movement disorder characterized by an uncontrollable urge to move because of uncomfortable, sometimes painful sensations in the legs with a diurnal variation and a release with movement.
Willis-Ekbom disease is also known as?
Report the outcomes of laser in situ keratomileusis (LASIK) for high myopia correction after long-term follow-up['Report the outcomes of laser in situ keratomileusis (LASIK) for high myopia correction after long-term follow-up.']Laser in situ keratomileusis is also known as LASIKLaser in situ keratomileusis (LASIK)
What is another name for keratomileusis?
CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them.CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. CellMaps can easily be integrated in any web page by using an available JavaScript API. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API. CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API.CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. CellMaps can easily be integrated in any web page by using an available JavaScript API. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services.
What is CellMaps?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128 ], "matryoshka_weights": [ 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 10lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|
0.9624 | 8 | - | 0.8560 | 0.8821 | 0.8904 | 0.8876 |
1.2030 | 10 | 1.2833 | - | - | - | - |
1.9248 | 16 | - | 0.8655 | 0.8808 | 0.8909 | 0.8889 |
2.4060 | 20 | 0.4785 | - | - | - | - |
2.8872 | 24 | - | 0.8720 | 0.8875 | 0.8893 | 0.8921 |
3.6090 | 30 | 0.2417 | - | - | - | - |
3.9699 | 33 | - | 0.8751 | 0.8924 | 0.8955 | 0.8960 |
4.8120 | 40 | 0.1607 | - | - | - | - |
4.9323 | 41 | - | 0.8799 | 0.8932 | 0.8964 | 0.8952 |
5.8947 | 49 | - | 0.8785 | 0.8944 | 0.9009 | 0.8982 |
6.0150 | 50 | 0.1152 | - | - | - | - |
6.9774 | 58 | - | 0.8803 | 0.8947 | 0.9018 | 0.8975 |
7.2180 | 60 | 0.0924 | - | - | - | - |
7.9398 | 66 | - | 0.8802 | 0.8956 | 0.9016 | 0.8973 |
8.4211 | 70 | 0.0832 | - | - | - | - |
8.9023 | 74 | - | 0.8801 | 0.8956 | 0.9027 | 0.8972 |
9.6241 | 80 | 0.074 | 0.8801 | 0.8953 | 0.9027 | 0.8972 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for pavanmantha/bge-base-en-bioembed768
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.843
- Cosine Accuracy@3 on dim 768self-reported0.943
- Cosine Accuracy@5 on dim 768self-reported0.962
- Cosine Accuracy@10 on dim 768self-reported0.979
- Cosine Precision@1 on dim 768self-reported0.843
- Cosine Precision@3 on dim 768self-reported0.314
- Cosine Precision@5 on dim 768self-reported0.192
- Cosine Precision@10 on dim 768self-reported0.098
- Cosine Recall@1 on dim 768self-reported0.843
- Cosine Recall@3 on dim 768self-reported0.943