Edit model card

Wav2Vec2-Large-XLSR-53-EU

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Basque using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "eu", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-eu")
model = Wav2Vec2ForCTC.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-eu")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the Basque test data of Common Voice.

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "eu", split="test")
wer = load_metric("wer")

model_name = "pcuenq/wav2vec2-large-xlsr-53-eu"

processor = Wav2Vec2Processor.from_pretrained(model_name)
model = Wav2Vec2ForCTC.from_pretrained(model_name)
model.to("cuda")

## Text pre-processing

chars_to_ignore_regex = '[\,\¿\?\.\¡\!\-\;\:\"\“\%\‘\”\\…\’\ː\'\‹\›\`\´\®\—\→]'
chars_to_ignore_pattern = re.compile(chars_to_ignore_regex)

def remove_special_characters(batch):
    batch["sentence"] = chars_to_ignore_pattern.sub('', batch["sentence"]).lower() + " "
    return batch

## Audio pre-processing

import librosa
def speech_file_to_array_fn(batch):
    speech_array, sample_rate = torchaudio.load(batch["path"])
    batch["speech"] = librosa.resample(speech_array.squeeze().numpy(), sample_rate, 16_000)
    return batch

# Text transformation and audio resampling
def cv_prepare(batch):
    batch = remove_special_characters(batch)
    batch = speech_file_to_array_fn(batch)
    return batch

# Number of CPUs or None
num_proc = 16
test_dataset = test_dataset.map(cv_prepare, remove_columns=['path'], num_proc=num_proc)

def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

# WER Metric computation
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 15.34 %

Training

The Common Voice train and validation datasets were used for training. Training was performed for 22 + 20 epochs with the following parameters:

  • Batch size 16, 2 gradient accumulation steps.
  • Learning rate: 2.5e-4
  • Activation dropout: 0.05
  • Attention dropout: 0.1
  • Hidden dropout: 0.05
  • Feature proj. dropout: 0.05
  • Mask time probability: 0.08
  • Layer dropout: 0.05
Downloads last month
1,958
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train pcuenq/wav2vec2-large-xlsr-53-eu

Evaluation results