metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: What begins on page 105 of this report?
sentences:
- >-
What sections are included alongside the Financial Statements in this
report?
- How did net revenues change from 2021 to 2022 on a FX-Neutral basis?
- How much did MedTech's sales increase in 2023 compared to 2022?
- source_sentence: When does the Company's fiscal year end?
sentences:
- >-
What was the total store count for the company at the end of fiscal
2022?
- What was the total revenue for all UnitedHealthcare services in 2023?
- >-
What were the main factors contributing to the increase in net income in
2023?
- source_sentence: AutoZone, Inc. began operations in 1979.
sentences:
- When did AutoZone, Inc. begin its operations?
- Mr. Pleas was named Senior Vice President and Controller during 2007.
- Which item discusses Financial Statements and Supplementary Data?
- source_sentence: Are the ESG goals guaranteed to be met?
sentences:
- What measures is the company implementing to support climate goals?
- What types of diseases does Gilead Sciences, Inc. focus on treating?
- >-
Changes in foreign exchange rates reduced cost of sales by $254 million
in 2023.
- source_sentence: What was Gilead's total revenue in 2023?
sentences:
- What was the total revenue for the year ended December 31, 2023?
- How much was the impairment related to the CAT loan receivable in 2023?
- >-
What are some of the critical accounting policies that affect financial
statements?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: basline 768
type: basline_768
metrics:
- type: cosine_accuracy@1
value: 0.7085714285714285
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8514285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8842857142857142
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9271428571428572
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7085714285714285
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2838095238095238
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17685714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09271428571428571
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7085714285714285
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8514285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8842857142857142
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9271428571428572
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8214972164555796
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7873509070294781
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.790665594958196
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: basline 512
type: basline_512
metrics:
- type: cosine_accuracy@1
value: 0.7114285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.85
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8828571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9228571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7114285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2833333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17657142857142855
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09228571428571428
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7114285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.85
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8828571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9228571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.820942296767774
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7878956916099771
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7915593121031292
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: basline 256
type: basline_256
metrics:
- type: cosine_accuracy@1
value: 0.7057142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8414285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.88
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9228571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7057142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28047619047619043
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.176
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09228571428571428
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7057142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8414285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.88
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9228571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8161680075424235
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7817953514739227
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.785367816349997
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: basline 128
type: basline_128
metrics:
- type: cosine_accuracy@1
value: 0.7028571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8342857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8742857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9171428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7028571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27809523809523806
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17485714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09171428571428569
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7028571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8342857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8742857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9171428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8109319521599055
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7768752834467119
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7802736634060462
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: basline 64
type: basline_64
metrics:
- type: cosine_accuracy@1
value: 0.6728571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8171428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8614285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9014285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6728571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2723809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17228571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09014285714285714
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6728571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8171428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8614285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9014285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7900026049536226
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7539795918367346
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7582240178397145
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("philschmid/bge-base-financial-matryoshka")
sentences = [
"What was Gilead's total revenue in 2023?",
'What was the total revenue for the year ended December 31, 2023?',
'How much was the impairment related to the CAT loan receivable in 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7086 |
cosine_accuracy@3 |
0.8514 |
cosine_accuracy@5 |
0.8843 |
cosine_accuracy@10 |
0.9271 |
cosine_precision@1 |
0.7086 |
cosine_precision@3 |
0.2838 |
cosine_precision@5 |
0.1769 |
cosine_precision@10 |
0.0927 |
cosine_recall@1 |
0.7086 |
cosine_recall@3 |
0.8514 |
cosine_recall@5 |
0.8843 |
cosine_recall@10 |
0.9271 |
cosine_ndcg@10 |
0.8215 |
cosine_mrr@10 |
0.7874 |
cosine_map@100 |
0.7907 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7114 |
cosine_accuracy@3 |
0.85 |
cosine_accuracy@5 |
0.8829 |
cosine_accuracy@10 |
0.9229 |
cosine_precision@1 |
0.7114 |
cosine_precision@3 |
0.2833 |
cosine_precision@5 |
0.1766 |
cosine_precision@10 |
0.0923 |
cosine_recall@1 |
0.7114 |
cosine_recall@3 |
0.85 |
cosine_recall@5 |
0.8829 |
cosine_recall@10 |
0.9229 |
cosine_ndcg@10 |
0.8209 |
cosine_mrr@10 |
0.7879 |
cosine_map@100 |
0.7916 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7057 |
cosine_accuracy@3 |
0.8414 |
cosine_accuracy@5 |
0.88 |
cosine_accuracy@10 |
0.9229 |
cosine_precision@1 |
0.7057 |
cosine_precision@3 |
0.2805 |
cosine_precision@5 |
0.176 |
cosine_precision@10 |
0.0923 |
cosine_recall@1 |
0.7057 |
cosine_recall@3 |
0.8414 |
cosine_recall@5 |
0.88 |
cosine_recall@10 |
0.9229 |
cosine_ndcg@10 |
0.8162 |
cosine_mrr@10 |
0.7818 |
cosine_map@100 |
0.7854 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7029 |
cosine_accuracy@3 |
0.8343 |
cosine_accuracy@5 |
0.8743 |
cosine_accuracy@10 |
0.9171 |
cosine_precision@1 |
0.7029 |
cosine_precision@3 |
0.2781 |
cosine_precision@5 |
0.1749 |
cosine_precision@10 |
0.0917 |
cosine_recall@1 |
0.7029 |
cosine_recall@3 |
0.8343 |
cosine_recall@5 |
0.8743 |
cosine_recall@10 |
0.9171 |
cosine_ndcg@10 |
0.8109 |
cosine_mrr@10 |
0.7769 |
cosine_map@100 |
0.7803 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6729 |
cosine_accuracy@3 |
0.8171 |
cosine_accuracy@5 |
0.8614 |
cosine_accuracy@10 |
0.9014 |
cosine_precision@1 |
0.6729 |
cosine_precision@3 |
0.2724 |
cosine_precision@5 |
0.1723 |
cosine_precision@10 |
0.0901 |
cosine_recall@1 |
0.6729 |
cosine_recall@3 |
0.8171 |
cosine_recall@5 |
0.8614 |
cosine_recall@10 |
0.9014 |
cosine_ndcg@10 |
0.79 |
cosine_mrr@10 |
0.754 |
cosine_map@100 |
0.7582 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 10 tokens
- mean: 46.11 tokens
- max: 289 tokens
|
- min: 7 tokens
- mean: 20.26 tokens
- max: 43 tokens
|
- Samples:
positive |
anchor |
Fiscal 2023 total gross profit margin of 35.1% represents an increase of 1.7 percentage points as compared to the respective prior year period. |
What was the total gross profit margin for Hewlett Packard Enterprise in fiscal 2023? |
Noninterest expense increased to $65.8 billion in 2023, primarily due to higher investments in people and technology and higher FDIC expense, including $2.1 billion for the estimated special assessment amount arising from the closure of Silicon Valley Bank and Signature Bank. |
What was the total noninterest expense for the company in 2023? |
As of May 31, 2022, FedEx Office had approximately 12,000 employees. |
How many employees did FedEx Office have as of May 31, 2023? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
sanity_evaluation
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
basline_128_cosine_map@100 |
basline_256_cosine_map@100 |
basline_512_cosine_map@100 |
basline_64_cosine_map@100 |
basline_768_cosine_map@100 |
0.8122 |
10 |
1.5259 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7502 |
0.7737 |
0.7827 |
0.7185 |
0.7806 |
1.6244 |
20 |
0.6545 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7689 |
0.7844 |
0.7869 |
0.7447 |
0.7909 |
2.4365 |
30 |
0.4784 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7733 |
0.7916 |
0.7904 |
0.7491 |
0.7930 |
3.2487 |
40 |
0.3827 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7739 |
0.7907 |
0.7900 |
0.7479 |
0.7948 |
0.8122 |
10 |
0.2685 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7779 |
0.7932 |
0.7948 |
0.7517 |
0.7943 |
1.6244 |
20 |
0.183 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7784 |
0.7929 |
0.7963 |
0.7575 |
0.7957 |
2.4365 |
30 |
0.1877 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7814 |
0.7914 |
0.7992 |
0.7570 |
0.7974 |
3.2487 |
40 |
0.1826 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7818 |
0.7916 |
0.7976 |
0.7580 |
0.7960 |
0.8122 |
10 |
0.071 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7810 |
0.7935 |
0.7954 |
0.7550 |
0.7949 |
1.6244 |
20 |
0.0629 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7855 |
0.7914 |
0.7989 |
0.7559 |
0.7981 |
2.4365 |
30 |
0.0827 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7893 |
0.7927 |
0.7987 |
0.7539 |
0.7961 |
3.2487 |
40 |
0.1003 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7903 |
0.7915 |
0.7980 |
0.7530 |
0.7951 |
0.8122 |
10 |
0.0213 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7786 |
0.7869 |
0.7885 |
0.7566 |
0.7908 |
1.6244 |
20 |
0.0234 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.783 |
0.7882 |
0.793 |
0.7551 |
0.7946 |
2.4365 |
30 |
0.0357 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7838 |
0.7892 |
0.7922 |
0.7579 |
0.7907 |
3.2487 |
40 |
0.0563 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7846 |
0.7887 |
0.7912 |
0.7582 |
0.7901 |
0.8122 |
10 |
0.0075 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7730 |
0.7816 |
0.7818 |
0.7550 |
0.7868 |
1.6244 |
20 |
0.01 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7827 |
0.785 |
0.7896 |
0.7551 |
0.7915 |
2.4365 |
30 |
0.0154 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7808 |
0.7838 |
0.7921 |
0.7584 |
0.7916 |
3.2487 |
40 |
0.0312 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7803 |
0.7854 |
0.7916 |
0.7582 |
0.7907 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.0
- Transformers: 4.42.0.dev0
- PyTorch: 2.1.2+cu121
- Accelerate: 0.29.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}