Thea
Collection
A family of models based on Llama 3.2 including improved reasoning, trained with GaLoRE, rsLoRA and non-Unsloth code.
•
3 items
•
Updated
•
1
An uncensored reasoning Llama 3.2 3B model trained on reasoning data.
It has been trained using improved training code, and gives an improved performance. Here is what inference code you should use:
from transformers import AutoModelForCausalLM, AutoTokenizer
MAX_REASONING_TOKENS = 1024
MAX_RESPONSE_TOKENS = 512
model_name = "piotr25691/thea-3b-25r"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Which is greater 9.9 or 9.11 ??"
messages = [
{"role": "user", "content": prompt}
]
# Generate reasoning
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("REASONING: " + reasoning_output)
# Generate answer
messages.append({"role": "reasoning", "content": reasoning_output})
response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device)
response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS)
response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("ANSWER: " + response_output)
This Llama model was trained faster than Unsloth using custom training code.
Visit https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4 to find out how you can finetune your models using BOTH of the Kaggle provided GPUs.
Base model
chuanli11/Llama-3.2-3B-Instruct-uncensored