metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:10K<n<100K
- loss:MultipleNegativesSymmetricRankingLoss
base_model: distilbert/distilbert-base-uncased
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: what is GOGO
sentences:
- What is Viasat
- are we flying into Tel Aviv
- how do i correct a name in term
- source_sentence: What is EU 261
sentences:
- is puj a EU compensation country
- can i take my bicycle on af
- flight delays over 6 hours
- source_sentence: Can i get wifi
sentences:
- which aircrafts do not have wifi
- military traveling with pet
- baggage delay to carousel
- source_sentence: austin airport
sentences:
- What time is IAH open
- amex card free checked bag
- what is upgrade companion
- source_sentence: pets in cargo
sentences:
- can a pet travel in cargo
- baggage exceptions for Amex
- how do I get sky priority
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on distilbert/distilbert-base-uncased
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: eval examples
type: eval_examples
metrics:
- type: pearson_cosine
value: .nan
name: Pearson Cosine
- type: spearman_cosine
value: .nan
name: Spearman Cosine
- type: pearson_manhattan
value: .nan
name: Pearson Manhattan
- type: spearman_manhattan
value: .nan
name: Spearman Manhattan
- type: pearson_euclidean
value: .nan
name: Pearson Euclidean
- type: spearman_euclidean
value: .nan
name: Spearman Euclidean
- type: pearson_dot
value: .nan
name: Pearson Dot
- type: spearman_dot
value: .nan
name: Spearman Dot
- type: pearson_max
value: .nan
name: Pearson Max
- type: spearman_max
value: .nan
name: Spearman Max
SentenceTransformer based on distilbert/distilbert-base-uncased
This is a sentence-transformers model finetuned from distilbert/distilbert-base-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pjbhaumik/biencoder-finetune-model-v9")
# Run inference
sentences = [
'pets in cargo',
'can a pet travel in cargo',
'baggage exceptions for Amex',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
eval_examples
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | nan |
spearman_cosine | nan |
pearson_manhattan | nan |
spearman_manhattan | nan |
pearson_euclidean | nan |
spearman_euclidean | nan |
pearson_dot | nan |
spearman_dot | nan |
pearson_max | nan |
spearman_max | nan |
Training Details
Training Dataset
Unnamed Dataset
- Size: 15,488 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 4 tokens
- mean: 10.4 tokens
- max: 47 tokens
- min: 4 tokens
- mean: 10.14 tokens
- max: 37 tokens
- 1: 100.00%
- Samples:
sentence_0 sentence_1 label how to use a companion certificate on delta.com
SHOPPING ON DELTA.COM FOR AMEX CERT
1
is jamaica can be booked with companion certificate
what areas can the American Express companion certificate be applied to
1
how do i book award travel on klm
can you book an air france ticket with miles
1
- Loss:
MultipleNegativesSymmetricRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 12multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 12max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | eval_examples_spearman_max |
---|---|---|---|
0.1033 | 100 | - | nan |
0.2066 | 200 | - | nan |
0.3099 | 300 | - | nan |
0.4132 | 400 | - | nan |
0.5165 | 500 | 0.7655 | nan |
0.6198 | 600 | - | nan |
0.7231 | 700 | - | nan |
0.8264 | 800 | - | nan |
0.9298 | 900 | - | nan |
1.0 | 968 | - | nan |
1.0331 | 1000 | 0.3727 | nan |
1.1364 | 1100 | - | nan |
1.2397 | 1200 | - | nan |
1.3430 | 1300 | - | nan |
1.4463 | 1400 | - | nan |
1.5496 | 1500 | 0.2686 | nan |
1.6529 | 1600 | - | nan |
1.7562 | 1700 | - | nan |
1.8595 | 1800 | - | nan |
1.9628 | 1900 | - | nan |
2.0 | 1936 | - | nan |
2.0661 | 2000 | 0.2709 | nan |
2.1694 | 2100 | - | nan |
2.2727 | 2200 | - | nan |
2.3760 | 2300 | - | nan |
2.4793 | 2400 | - | nan |
2.5826 | 2500 | 0.231 | nan |
2.6860 | 2600 | - | nan |
2.7893 | 2700 | - | nan |
2.8926 | 2800 | - | nan |
2.9959 | 2900 | - | nan |
3.0 | 2904 | - | nan |
3.0992 | 3000 | 0.2461 | nan |
3.2025 | 3100 | - | nan |
3.3058 | 3200 | - | nan |
3.4091 | 3300 | - | nan |
3.5124 | 3400 | - | nan |
3.6157 | 3500 | 0.2181 | nan |
3.7190 | 3600 | - | nan |
3.8223 | 3700 | - | nan |
3.9256 | 3800 | - | nan |
4.0 | 3872 | - | nan |
4.0289 | 3900 | - | nan |
4.1322 | 4000 | 0.2288 | nan |
4.2355 | 4100 | - | nan |
4.3388 | 4200 | - | nan |
4.4421 | 4300 | - | nan |
4.5455 | 4400 | - | nan |
4.6488 | 4500 | 0.2123 | nan |
4.7521 | 4600 | - | nan |
4.8554 | 4700 | - | nan |
4.9587 | 4800 | - | nan |
5.0 | 4840 | - | nan |
5.0620 | 4900 | - | nan |
5.1653 | 5000 | 0.2254 | nan |
5.2686 | 5100 | - | nan |
5.3719 | 5200 | - | nan |
5.4752 | 5300 | - | nan |
5.5785 | 5400 | - | nan |
5.6818 | 5500 | 0.2077 | nan |
5.7851 | 5600 | - | nan |
5.8884 | 5700 | - | nan |
5.9917 | 5800 | - | nan |
6.0 | 5808 | - | nan |
6.0950 | 5900 | - | nan |
6.1983 | 6000 | 0.218 | nan |
6.3017 | 6100 | - | nan |
6.4050 | 6200 | - | nan |
6.5083 | 6300 | - | nan |
6.6116 | 6400 | - | nan |
6.7149 | 6500 | 0.206 | nan |
6.8182 | 6600 | - | nan |
6.9215 | 6700 | - | nan |
7.0 | 6776 | - | nan |
7.0248 | 6800 | - | nan |
7.1281 | 6900 | - | nan |
7.2314 | 7000 | 0.2126 | nan |
7.3347 | 7100 | - | nan |
7.4380 | 7200 | - | nan |
7.5413 | 7300 | - | nan |
7.6446 | 7400 | - | nan |
7.7479 | 7500 | 0.2065 | nan |
7.8512 | 7600 | - | nan |
7.9545 | 7700 | - | nan |
8.0 | 7744 | - | nan |
8.0579 | 7800 | - | nan |
8.1612 | 7900 | - | nan |
8.2645 | 8000 | 0.2068 | nan |
8.3678 | 8100 | - | nan |
8.4711 | 8200 | - | nan |
8.5744 | 8300 | - | nan |
8.6777 | 8400 | - | nan |
8.7810 | 8500 | 0.2014 | nan |
8.8843 | 8600 | - | nan |
8.9876 | 8700 | - | nan |
9.0 | 8712 | - | nan |
9.0909 | 8800 | - | nan |
9.1942 | 8900 | - | nan |
9.2975 | 9000 | 0.2057 | nan |
9.4008 | 9100 | - | nan |
9.5041 | 9200 | - | nan |
9.6074 | 9300 | - | nan |
9.7107 | 9400 | - | nan |
9.8140 | 9500 | 0.1969 | nan |
9.9174 | 9600 | - | nan |
10.0 | 9680 | - | nan |
10.0207 | 9700 | - | nan |
10.1240 | 9800 | - | nan |
10.2273 | 9900 | - | nan |
10.3306 | 10000 | 0.2023 | nan |
10.4339 | 10100 | - | nan |
10.5372 | 10200 | - | nan |
10.6405 | 10300 | - | nan |
10.7438 | 10400 | - | nan |
10.8471 | 10500 | 0.1946 | nan |
10.9504 | 10600 | - | nan |
11.0 | 10648 | - | nan |
11.0537 | 10700 | - | nan |
11.1570 | 10800 | - | nan |
11.2603 | 10900 | - | nan |
11.3636 | 11000 | 0.1982 | nan |
11.4669 | 11100 | - | nan |
11.5702 | 11200 | - | nan |
11.6736 | 11300 | - | nan |
11.7769 | 11400 | - | nan |
11.8802 | 11500 | 0.1919 | nan |
11.9835 | 11600 | - | nan |
12.0 | 11616 | - | nan |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.1.0
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}