RoSEtta-base-ja / README.md
yano0's picture
Update README.md
a9a9ecb verified
|
raw
history blame
4.46 kB
metadata
language:
  - ja
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
metrics: null
widget: []
pipeline_tag: sentence-similarity
license: apache-2.0
datasets:
  - hpprc/emb
  - hpprc/mqa-ja
  - google-research-datasets/paws-x

Model Details

The model is 1024-context sentence embedding model based on the RoFormer. The model is pre-trained with Wikipedia and cc100 and fine-tuned as a sentence embedding model. Fine-tuning begins with weakly supervised learning using mc4 and MQA. After that, we perform the same 3-stage learning process as GLuCoSE v2.

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 1024 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: RetrievaBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("pkshatech/RoSEtta-base")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Benchmarks

Retieval

Evaluated with MIRACL-ja, [JQARA](https://huggingface.co/datasets/hotchpotch/JQaRA) and MLDR-ja.

model size MIRACL
Recall@5
JQaRA
nDCG@10
MLDR
nDCG@10
me5-base 0.3B 84.2 47.2 25.4
GLuCoSE 0.1B 53.3 30.8 25.2
RoSEtta 0.2B 79.3 57.7 32.3

JMTEB

Evaluated with JMTEB.

  • Time-consuming [‘amazon_review_classification’, ‘mrtydi’, ‘jaqket’, ‘esci’] were excluded and evaluated.
  • The average is a macro-average per task.
model size Class. Ret. STS. Clus. Pair. Avg.
me5-base 0.3B 75.1 80.6 80.5 52.6 62.4 70.2
GLuCoSE 0.1B 82.6 69.8 78.2 51.5 66.2 69.7
RoSEtta 0.2B 79.0 84.3 81.4 53.2 61.7 71.9

Authors

Chihiro Yano, Go Mocho, Hideyuki Tachibana, Hiroto Takegawa, Yotaro Watanabe

License

This model is published under the Apache License, Version 2.0.