Edit model card

IKI-Category-multilabel_bge

This model is a fine-tuned version of BAAI/bge-base-en-v1.5 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4541
  • Precision-micro: 0.75
  • Precision-samples: 0.7708
  • Precision-weighted: 0.7517
  • Recall-micro: 0.7880
  • Recall-samples: 0.7858
  • Recall-weighted: 0.7880
  • F1-micro: 0.7685
  • F1-samples: 0.7537
  • F1-weighted: 0.7615

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision-micro Precision-samples Precision-weighted Recall-micro Recall-samples Recall-weighted F1-micro F1-samples F1-weighted
0.8999 0.99 94 0.8742 0.3889 0.0272 0.1308 0.0169 0.0188 0.0169 0.0323 0.0202 0.0280
0.7377 2.0 189 0.6770 0.4727 0.4996 0.5333 0.5639 0.5782 0.5639 0.5143 0.4883 0.4998
0.5582 2.99 283 0.5552 0.5111 0.5585 0.5685 0.7229 0.7357 0.7229 0.5988 0.5959 0.6175
0.3943 4.0 378 0.4713 0.5616 0.6397 0.5869 0.7904 0.8071 0.7904 0.6567 0.6761 0.6611
0.2883 4.99 472 0.4555 0.6384 0.6969 0.6444 0.7446 0.7641 0.7446 0.6874 0.6901 0.6854
0.2112 6.0 567 0.4459 0.6443 0.6968 0.6637 0.7855 0.7942 0.7855 0.7079 0.7123 0.7068
0.1608 6.99 661 0.4212 0.6508 0.7071 0.6586 0.7904 0.7931 0.7904 0.7138 0.7161 0.7116
0.1247 8.0 756 0.4177 0.6633 0.7145 0.6650 0.7976 0.8006 0.7976 0.7243 0.7193 0.7195
0.1031 8.99 850 0.4435 0.7277 0.7523 0.7306 0.7855 0.7875 0.7855 0.7555 0.7425 0.7487
0.0851 10.0 945 0.4522 0.7380 0.7623 0.7465 0.7807 0.7795 0.7807 0.7588 0.7432 0.7516
0.074 10.99 1039 0.4548 0.7359 0.7663 0.7368 0.7855 0.7910 0.7855 0.7599 0.7490 0.7521
0.0648 12.0 1134 0.4430 0.7425 0.7676 0.7437 0.7783 0.7781 0.7783 0.76 0.7461 0.7540
0.0605 12.99 1228 0.4478 0.7366 0.7651 0.7379 0.7952 0.7948 0.7952 0.7648 0.7545 0.7579
0.0566 14.0 1323 0.4574 0.7506 0.7708 0.7519 0.7904 0.7893 0.7904 0.7700 0.7546 0.7625
0.0546 14.92 1410 0.4541 0.75 0.7708 0.7517 0.7880 0.7858 0.7880 0.7685 0.7537 0.7615
Category Precision Recall F1 Suport
Active mobility 0.70 0.894 0.7908 19.0
Alternative fuels 0.804 0.865 0.833 52.0
Aviation improvements 0.700 1.00 0.824 7.0
Comprehensive transport planning 0.750 0.571 0.649 21.0
Digital solutions 0.708 0.772 0.739 22.0
Economic instruments 0.742 0.821 0.780 28.0
Education and behavioral change 0.727 0.727 0.727 11.0
Electric mobility 0.766 0.922 0.837 64.0
Freight efficiency improvements 0.768 0.650 0.703 20.0
Improve infrastructure 0.638 0.857 0.732 35.0
Land use 1.00 0.625 0.769 8.0
Other Transport Category 0.600 0.27 0.375 11.0
Public transport improvement 0.777 0.833 0.804 42.0
Shipping improvements 0.846 0.846 0.846 13.0
Transport demand management 0.666 0.40 0.500 15.0
Vehicle improvements 0.783 0.766 0.774 47.0

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Carbon Emitted: 0.0473 kg of CO2
  • Hours Used: 0.996 hours

Training Hardware

  • On Cloud: yes
  • GPU Model: 1 x Tesla T4
  • CPU Model: Intel(R) Xeon(R) CPU @ 2.30GHz
  • RAM Size: 12.67 GB

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.1
Downloads last month
15
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ppsingh/IKI-Category-multilabel_bge

Finetuned
(287)
this model