|
\begin{thebibliography}{7} |
|
\providecommand{\natexlab}[1]{#1} |
|
\providecommand{\url}[1]{\texttt{#1}} |
|
\expandafter\ifx\csname urlstyle\endcsname\relax |
|
\providecommand{\doi}[1]{doi: |
|
\providecommand{\doi}{doi: \begingroup \urlstyle{rm}\Url}\fi |
|
|
|
\bibitem[Goodfellow et~al.(2014)Goodfellow, Pouget-Abadie, Mirza, Xu, |
|
Warde-Farley, Ozair, Courville, and Bengio]{gan} |
|
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, |
|
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. |
|
\newblock Generative adversarial nets. |
|
\newblock In Z.~Ghahramani, M.~Welling, C.~Cortes, N.~Lawrence, and K.Q. |
|
Weinberger (eds.), \emph{Advances in Neural Information Processing Systems}, |
|
volume~27. Curran Associates, Inc., 2014. |
|
\newblock URL |
|
\url{https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf}. |
|
|
|
\bibitem[Ho et~al.(2020)Ho, Jain, and Abbeel]{ddpm} |
|
Jonathan Ho, Ajay Jain, and Pieter Abbeel. |
|
\newblock Denoising diffusion probabilistic models. |
|
\newblock In H.~Larochelle, M.~Ranzato, R.~Hadsell, M.F. Balcan, and H.~Lin |
|
(eds.), \emph{Advances in Neural Information Processing Systems}, volume~33, |
|
pp.\ 6840--6851. Curran Associates, Inc., 2020. |
|
\newblock URL |
|
\url{https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf}. |
|
|
|
\bibitem[Karras et~al.(2022)Karras, Aittala, Aila, and Laine]{edm} |
|
Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. |
|
\newblock Elucidating the design space of diffusion-based generative models. |
|
\newblock In Alice~H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho |
|
(eds.), \emph{Advances in Neural Information Processing Systems}, 2022. |
|
\newblock URL \url{https://openreview.net/forum?id=k7FuTOWMOc7}. |
|
|
|
\bibitem[Kingma \& Welling(2014)Kingma and Welling]{vae} |
|
Diederik~P. Kingma and Max Welling. |
|
\newblock {Auto-Encoding Variational Bayes}. |
|
\newblock In \emph{2nd International Conference on Learning Representations, |
|
{ICLR} 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track |
|
Proceedings}, 2014. |
|
|
|
\bibitem[Kotelnikov et~al.(2022)Kotelnikov, Baranchuk, Rubachev, and |
|
Babenko]{kotelnikov2022tabddpm} |
|
Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. |
|
\newblock Tabddpm: Modelling tabular data with diffusion models, 2022. |
|
|
|
\bibitem[Sohl-Dickstein et~al.(2015)Sohl-Dickstein, Weiss, Maheswaranathan, and |
|
Ganguli]{pmlr-v37-sohl-dickstein15} |
|
Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. |
|
\newblock Deep unsupervised learning using nonequilibrium thermodynamics. |
|
\newblock In Francis Bach and David Blei (eds.), \emph{Proceedings of the 32nd |
|
International Conference on Machine Learning}, volume~37 of \emph{Proceedings |
|
of Machine Learning Research}, pp.\ 2256--2265, Lille, France, 07--09 Jul |
|
2015. PMLR. |
|
|
|
\bibitem[Yang et~al.(2023)Yang, Zhang, Song, Hong, Xu, Zhao, Zhang, Cui, and |
|
Yang]{yang2023diffusion} |
|
Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao |
|
Zhang, Bin Cui, and Ming-Hsuan Yang. |
|
\newblock Diffusion models: A comprehensive survey of methods and applications. |
|
\newblock \emph{ACM Computing Surveys}, 56\penalty0 (4):\penalty0 1--39, 2023. |
|
|
|
\end{thebibliography} |
|
|