|
\begin{thebibliography}{9} |
|
\providecommand{\natexlab}[1]{ |
|
\providecommand{\url}[1]{\texttt{ |
|
\expandafter\ifx\csname urlstyle\endcsname\relax |
|
\providecommand{\doi}[1]{doi: |
|
\providecommand{\doi}{doi: \begingroup \urlstyle{rm}\Url}\fi |
|
|
|
\bibitem[Bahdanau et~al.(2014)Bahdanau, Cho, and Bengio]{bahdanau2014neural} |
|
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. |
|
\newblock Neural machine translation by jointly learning to align and |
|
translate. |
|
\newblock \emph{arXiv preprint arXiv:1409.0473}, 2014. |
|
|
|
\bibitem[Glorot \& Bengio(2010)Glorot and Bengio]{Glorot2010UnderstandingTD} |
|
Xavier Glorot and Yoshua Bengio. |
|
\newblock Understanding the difficulty of training deep feedforward neural |
|
networks. |
|
\newblock pp.\ 249--256, 2010. |
|
|
|
\bibitem[Goodfellow et~al.(2016)Goodfellow, Bengio, Courville, and |
|
Bengio]{goodfellow2016deep} |
|
Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. |
|
\newblock \emph{Deep learning}, volume~1. |
|
\newblock MIT Press, 2016. |
|
|
|
\bibitem[He et~al.(2015)He, Zhang, Ren, and Sun]{He2015DelvingDI} |
|
Kaiming He, X.~Zhang, Shaoqing Ren, and Jian Sun. |
|
\newblock Delving deep into rectifiers: Surpassing human-level performance on |
|
imagenet classification. |
|
\newblock \emph{2015 IEEE International Conference on Computer Vision (ICCV)}, |
|
pp.\ 1026--1034, 2015. |
|
|
|
\bibitem[Kingma \& Ba(2014)Kingma and Ba]{kingma2014adam} |
|
Diederik~P Kingma and Jimmy Ba. |
|
\newblock Adam: A method for stochastic optimization. |
|
\newblock \emph{arXiv preprint arXiv:1412.6980}, 2014. |
|
|
|
\bibitem[Loshchilov \& Hutter(2017)Loshchilov and Hutter]{loshchilov2017adamw} |
|
Ilya Loshchilov and Frank Hutter. |
|
\newblock Decoupled weight decay regularization. |
|
\newblock \emph{arXiv preprint arXiv:1711.05101}, 2017. |
|
|
|
\bibitem[Power et~al.(2022)Power, Burda, Edwards, Babuschkin, and |
|
Misra]{power2022grokking} |
|
Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. |
|
\newblock Grokking: Generalization beyond overfitting on small algorithmic |
|
datasets. |
|
\newblock \emph{arXiv preprint arXiv:2201.02177}, 2022. |
|
|
|
\bibitem[Saxe et~al.(2013)Saxe, McClelland, and Ganguli]{Saxe2013ExactST} |
|
Andrew~M. Saxe, James~L. McClelland, and S.~Ganguli. |
|
\newblock Exact solutions to the nonlinear dynamics of learning in deep linear |
|
neural networks. |
|
\newblock \emph{CoRR}, abs/1312.6120, 2013. |
|
|
|
\bibitem[Vaswani et~al.(2017)Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, |
|
Kaiser, and Polosukhin]{vaswani2017attention} |
|
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, |
|
Aidan~N Gomez, {\L}ukasz Kaiser, and Illia Polosukhin. |
|
\newblock Attention is all you need. |
|
\newblock \emph{Advances in neural information processing systems}, 30, 2017. |
|
|
|
\end{thebibliography} |
|
|