Lettuce POS Taggers
Collection
Fine-tuned Part-of-Speech Taggers for English, Dutch, French & German
•
8 items
•
Updated
•
1
This model is a fine-tuned version of almanach/camembert-base on the None dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.95 | 14 | 3.6697 | 0.0210 | 0.0194 | 0.0201 | 0.0215 |
No log | 1.95 | 28 | 3.6329 | 0.0513 | 0.0484 | 0.0498 | 0.0511 |
No log | 2.95 | 42 | 3.5739 | 0.1142 | 0.1086 | 0.1113 | 0.1267 |
No log | 3.95 | 56 | 3.4791 | 0.2535 | 0.1976 | 0.2221 | 0.3061 |
No log | 4.95 | 70 | 3.3377 | 0.3393 | 0.2029 | 0.2539 | 0.3788 |
No log | 5.95 | 84 | 3.1886 | 0.3737 | 0.1401 | 0.2038 | 0.3427 |
No log | 6.95 | 98 | 3.0505 | 0.4342 | 0.3211 | 0.3692 | 0.4600 |
No log | 7.95 | 112 | 2.8996 | 0.5160 | 0.4319 | 0.4702 | 0.5282 |
No log | 8.95 | 126 | 2.7485 | 0.5617 | 0.4878 | 0.5222 | 0.5732 |
No log | 9.95 | 140 | 2.5862 | 0.6077 | 0.5374 | 0.5704 | 0.6246 |
No log | 10.95 | 154 | 2.4205 | 0.6805 | 0.6311 | 0.6549 | 0.6887 |
No log | 11.95 | 168 | 2.2603 | 0.7816 | 0.7569 | 0.7691 | 0.7839 |
No log | 12.95 | 182 | 2.1124 | 0.8366 | 0.8305 | 0.8335 | 0.8370 |
No log | 13.95 | 196 | 1.9826 | 0.8691 | 0.8681 | 0.8686 | 0.8736 |
No log | 14.95 | 210 | 1.8721 | 0.9210 | 0.92 | 0.9205 | 0.9240 |
No log | 15.95 | 224 | 1.7779 | 0.9390 | 0.9392 | 0.9391 | 0.9417 |
No log | 16.95 | 238 | 1.6986 | 0.9442 | 0.9452 | 0.9447 | 0.9466 |
No log | 17.95 | 252 | 1.6294 | 0.9467 | 0.9476 | 0.9472 | 0.9486 |
No log | 18.95 | 266 | 1.5667 | 0.9481 | 0.9493 | 0.9487 | 0.9499 |
No log | 19.95 | 280 | 1.5073 | 0.9507 | 0.9522 | 0.9514 | 0.9523 |
No log | 20.95 | 294 | 1.4499 | 0.9538 | 0.9550 | 0.9544 | 0.9552 |
No log | 21.95 | 308 | 1.3926 | 0.9555 | 0.9563 | 0.9559 | 0.9563 |
No log | 22.95 | 322 | 1.3373 | 0.9609 | 0.9614 | 0.9612 | 0.9612 |
No log | 23.95 | 336 | 1.2815 | 0.9622 | 0.9624 | 0.9623 | 0.9623 |
No log | 24.95 | 350 | 1.2246 | 0.9649 | 0.9648 | 0.9648 | 0.9646 |
No log | 25.95 | 364 | 1.1682 | 0.9653 | 0.9652 | 0.9652 | 0.9648 |
No log | 26.95 | 378 | 1.1114 | 0.9650 | 0.9659 | 0.9654 | 0.9661 |
No log | 27.95 | 392 | 1.0521 | 0.9669 | 0.9675 | 0.9672 | 0.9699 |
No log | 28.95 | 406 | 0.9950 | 0.9677 | 0.9679 | 0.9678 | 0.9707 |
No log | 29.95 | 420 | 0.9364 | 0.9687 | 0.9690 | 0.9688 | 0.9716 |
No log | 30.95 | 434 | 0.8800 | 0.9691 | 0.9693 | 0.9692 | 0.9721 |
No log | 31.95 | 448 | 0.8233 | 0.9693 | 0.9698 | 0.9696 | 0.9726 |
No log | 32.95 | 462 | 0.7679 | 0.9703 | 0.9703 | 0.9703 | 0.9733 |
No log | 33.95 | 476 | 0.7146 | 0.9711 | 0.9711 | 0.9711 | 0.9737 |
No log | 34.95 | 490 | 0.6641 | 0.9722 | 0.9724 | 0.9723 | 0.9750 |
2.0937 | 35.95 | 504 | 0.6187 | 0.9729 | 0.9729 | 0.9729 | 0.9755 |
2.0937 | 36.95 | 518 | 0.5834 | 0.9727 | 0.9732 | 0.9729 | 0.9756 |
2.0937 | 37.95 | 532 | 0.5605 | 0.9735 | 0.9739 | 0.9737 | 0.9762 |
2.0937 | 38.95 | 546 | 0.5466 | 0.9737 | 0.9742 | 0.9739 | 0.9765 |
2.0937 | 39.95 | 560 | 0.5416 | 0.9742 | 0.9745 | 0.9743 | 0.9768 |