Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: prince-canuma/Llama-3-6B-v0
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: prince-canuma/fineweb-CC-MAIN-2024-10-1B-en
    type: completion
    split: train
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: ./llama-3-6b
save_safetensors: true
adapter: qlora
lora_model_dir:

sequence_len: 8192
sample_packing: false
pad_to_sequence_len: false

lora_r: 128
lora_alpha: 128
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:


wandb_project: llama-3-6b
wandb_entity: 
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 2
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 2e-4

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 4
eval_table_size:
save_steps: 4000
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
    pad_token: "<|reserved_special_token_0|>"


llama-3-6b

This model is a fine-tuned version of prince-canuma/Llama-3-6B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4942

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
7.1562 0.0 1 7.1806
2.7339 0.25 5867 2.6266
2.6905 0.5 11734 2.5872
2.6134 0.75 17601 2.5549
2.532 1.0 23468 2.5235
2.5319 1.25 29335 2.5067
2.3336 1.5 35202 2.4968
2.3486 1.75 41069 2.4942

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0.dev0
  • Pytorch 2.2.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for prince-canuma/Llama-3-6B-v0.1-adapters

Adapter
(1)
this model