metadata
language:
- en
license: apache-2.0
tags:
- axolotl
- generated_from_trainer
base_model: pszemraj/Mistral-7B-v0.3-prune6
datasets:
- BEE-spoke-data/knowledge-inoc-concat-v1
model-index:
- name: Mistral-v0.3-6B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 45.14
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 71.65
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.83
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 45.64
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.77
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 8.34
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 24.54
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 13.52
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0.83
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.01
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.61
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 12.7
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
Mistral-v0.3-6B
Brief continued pretraining @ ctx 4096 to 'heal' the layer-pruning.
Model description
This model is a fine-tuned version of pszemraj/Mistral-7B-v0.3-prune6 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2860
See axolotl config
axolotl version: 0.4.0
base_model: pszemraj/Mistral-7B-v0.3-prune6
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
strict: false
seed: 80085
max_steps: 2000
# dataset
datasets:
- path: BEE-spoke-data/knowledge-inoc-concat-v1
name: smorgasbord-tb-quality
type: completion
field: text
val_set_size: 0.01
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: false
train_on_inputs: false
group_by_length: false
# WANDB
wandb_project: llama3-pruning
wandb_entity: pszemraj
wandb_watch: gradients
wandb_name: Mistral-6B-v0.3-v0.1-ii
hub_model_id: pszemraj/Mistral-v0.3-6B-ii
hub_strategy: every_save
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_32bit
weight_decay: 0.1
lr_scheduler: cosine
learning_rate: 2e-5
warmup_ratio: 0.1
load_in_8bit: false
load_in_4bit: false
bfloat16: true
tf32: true
flash_attention: true
torch_compile: true
torch_compile_backend: inductor
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
# hyperparams for freq of evals, saving, etc
evals_per_epoch: 5
saves_per_epoch: 5
save_safetensors: true
save_total_limit: 1
output_dir: /workspace/output-axolotl/output-model-6b
logging_steps: 6
deepspeed:
special_tokens:
Quick eval
Quick eval for: pszemraj/Mistral-v0.3-6B-ii
bootstrapping for stddev: perplexity hf (pretrained=pszemraj/Mistral-v0.3-6B-ii,trust_remote_code=True,dtype=bfloat16), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 2
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
arc_easy | 1 | none | 0 | acc | 0.7109 | ± | 0.0093 |
none | 0 | acc_norm | 0.6654 | ± | 0.0097 | ||
boolq | 2 | none | 0 | acc | 0.7930 | ± | 0.0071 |
lambada_openai | 1 | none | 0 | perplexity | 4.9892 | ± | 0.1269 |
none | 0 | acc | 0.6746 | ± | 0.0065 | ||
openbookqa | 1 | none | 0 | acc | 0.2460 | ± | 0.0193 |
none | 0 | acc_norm | 0.3700 | ± | 0.0216 | ||
piqa | 1 | none | 0 | acc | 0.7350 | ± | 0.0103 |
none | 0 | acc_norm | 0.7350 | ± | 0.0103 | ||
winogrande | 1 | none | 0 | acc | 0.6930 | ± | 0.0130 |
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 80085
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 200
- training_steps: 2000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 1.5980 |
1.578 | 0.0955 | 400 | 1.4028 |
1.5828 | 0.1911 | 800 | 1.3809 |
1.4355 | 0.2866 | 1200 | 1.3152 |
1.4618 | 0.3822 | 1600 | 1.2877 |
1.4551 | 0.4777 | 2000 | 1.2860 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 49.23 |
AI2 Reasoning Challenge (25-Shot) | 45.14 |
HellaSwag (10-Shot) | 71.65 |
MMLU (5-Shot) | 51.83 |
TruthfulQA (0-shot) | 45.64 |
Winogrande (5-shot) | 72.77 |
GSM8k (5-shot) | 8.34 |
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 10.03 |
IFEval (0-Shot) | 24.54 |
BBH (3-Shot) | 13.52 |
MATH Lvl 5 (4-Shot) | 0.83 |
GPQA (0-shot) | 2.01 |
MuSR (0-shot) | 6.61 |
MMLU-PRO (5-shot) | 12.70 |