Upload tokenization_phi3_small.py
Browse files- tokenization_phi3_small.py +315 -0
tokenization_phi3_small.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/tokenization_qwen.py
|
2 |
+
import os
|
3 |
+
from typing import Collection, List, Optional, Dict, Set, Tuple, Union
|
4 |
+
|
5 |
+
from functools import cached_property
|
6 |
+
|
7 |
+
import base64
|
8 |
+
|
9 |
+
from transformers import PreTrainedTokenizer, AddedToken, AutoConfig
|
10 |
+
from transformers.models.auto.tokenization_auto import get_tokenizer_config
|
11 |
+
import tiktoken
|
12 |
+
|
13 |
+
|
14 |
+
"""
|
15 |
+
This tokenizer is almost identical to tiktoken.get_encoding("cl100k_base")
|
16 |
+
with a few additional special tokens to support the ChatML format.
|
17 |
+
|
18 |
+
TODO(bapatra): Right now, I do not save the special tokens to the vocab file.
|
19 |
+
Maybe in the future, that would be useful? Can add that support later.
|
20 |
+
|
21 |
+
"""
|
22 |
+
|
23 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
24 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
25 |
+
contents = f.read()
|
26 |
+
return {
|
27 |
+
base64.b64decode(token): int(rank)
|
28 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
29 |
+
}
|
30 |
+
|
31 |
+
# On the megatron codebase, we pad vocabularies to ensure matrix multiplication is fast.
|
32 |
+
# this in turn causes some indices to be empty. We account for these empty indices by adding
|
33 |
+
# dummy tokens to the tokenizer.
|
34 |
+
|
35 |
+
EFFECTIVE_PADDED_VOCAB_SIZE = 100352
|
36 |
+
ACTUAL_VOCAB_SIZE = 100276
|
37 |
+
|
38 |
+
|
39 |
+
DUMMY_TOKENS = {
|
40 |
+
f"<|dummy_id_{11 + offset}|>": 100276 + offset
|
41 |
+
for offset in range(1, EFFECTIVE_PADDED_VOCAB_SIZE - ACTUAL_VOCAB_SIZE)
|
42 |
+
}
|
43 |
+
|
44 |
+
SPECIAL_TOKENS = {
|
45 |
+
# tiktoken.get_encoding("cl100k_base")._special_tokens
|
46 |
+
'<|endoftext|>': 100257,
|
47 |
+
'<|fim_prefix|>': 100258,
|
48 |
+
'<|fim_middle|>': 100259,
|
49 |
+
'<|fim_suffix|>': 100260,
|
50 |
+
# Special tokens for post-training
|
51 |
+
"<|system|>": 100261,
|
52 |
+
"<|user|>": 100262,
|
53 |
+
"<|assistant|>": 100263,
|
54 |
+
# Dummy unused tokens
|
55 |
+
"<|dummy_id_0|>": 100264,
|
56 |
+
"<|dummy_id_1|>": 100265,
|
57 |
+
# Special tokens for post-training continued
|
58 |
+
"<|end|>": 100266,
|
59 |
+
# Some dummy tokens, so that tokenization is contiguous and does not cause issues
|
60 |
+
# Note that the 100256th token of tiktoken.get_encoding("cl100k_base") does not
|
61 |
+
# actually map to anything. So we use a dummy token here.
|
62 |
+
"<|dummy_id_2|>": 100256,
|
63 |
+
# Likewise, tokens from 100267 to 100275 are also unused
|
64 |
+
"<|dummy_id_3|>": 100267,
|
65 |
+
"<|dummy_id_4|>": 100268,
|
66 |
+
"<|dummy_id_5|>": 100269,
|
67 |
+
"<|dummy_id_6|>": 100270,
|
68 |
+
"<|dummy_id_7|>": 100271,
|
69 |
+
"<|dummy_id_8|>": 100272,
|
70 |
+
"<|dummy_id_9|>": 100273,
|
71 |
+
"<|dummy_id_10|>": 100274,
|
72 |
+
"<|dummy_id_11|>": 100275,
|
73 |
+
# The final end of prompt token
|
74 |
+
# (unused, but present as a part of tiktoken.get_encoding("cl100k_base")._special_tokens)
|
75 |
+
'<|endofprompt|>': 100276,
|
76 |
+
# Dummy tokens to account for padding of the tokenizer
|
77 |
+
# We pad to ensure tensor cores are used for vocab multiplication
|
78 |
+
**DUMMY_TOKENS
|
79 |
+
}
|
80 |
+
|
81 |
+
class Phi3SmallTokenizer(PreTrainedTokenizer):
|
82 |
+
vocab_files_names = {
|
83 |
+
"vocab_file": "cl100k_base.tiktoken"
|
84 |
+
}
|
85 |
+
|
86 |
+
model_input_names: List[str] = ["input_ids", "attention_mask"]
|
87 |
+
padding_side = "left"
|
88 |
+
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
vocab_file: Optional[str] = None,
|
92 |
+
errors: str = "replace",
|
93 |
+
**kwargs
|
94 |
+
) -> None:
|
95 |
+
# PreTrainedTokenizer's init calls _add_tokens, which in turn checks
|
96 |
+
# if the token is present in `self.special_tokens``. Hence instantiating it here.
|
97 |
+
# The way Qwen gets around this is by checking against SPECIAL_TOKENS
|
98 |
+
# But I think it's better to check against the objects own `special_tokens`
|
99 |
+
# in case we eventually want to allow the tokenizer to have special tokens.
|
100 |
+
self.special_tokens = SPECIAL_TOKENS
|
101 |
+
|
102 |
+
super().__init__(**kwargs)
|
103 |
+
self.errors = errors
|
104 |
+
|
105 |
+
base = tiktoken.get_encoding("cl100k_base")
|
106 |
+
if vocab_file is None:
|
107 |
+
self.mergeable_ranks: Dict[bytes, int] = base._mergeable_ranks
|
108 |
+
else:
|
109 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file)
|
110 |
+
|
111 |
+
self.pat_str = base._pat_str
|
112 |
+
|
113 |
+
enc = tiktoken.Encoding(
|
114 |
+
name="phi3small",
|
115 |
+
pat_str=self.pat_str,
|
116 |
+
mergeable_ranks=self.mergeable_ranks,
|
117 |
+
special_tokens=self.special_tokens,
|
118 |
+
)
|
119 |
+
self.tokenizer = enc
|
120 |
+
|
121 |
+
self.decoder: Dict[int, bytes] = {
|
122 |
+
v: k for k, v in self.mergeable_ranks.items()
|
123 |
+
}
|
124 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
125 |
+
|
126 |
+
self.eod_id = self.tokenizer.eot_token
|
127 |
+
self._eos_token = self._convert_id_to_token(self.eod_id)
|
128 |
+
|
129 |
+
# Setting the bos_token to be the same as the eos_token
|
130 |
+
# Note that this is **not** the correct thing to do, and is done
|
131 |
+
# just so that some of the downstream libraries do not break.
|
132 |
+
self._bos_token = self._eos_token
|
133 |
+
|
134 |
+
# Assign the special tokens to class variables
|
135 |
+
self.system_id = self.special_tokens["<|system|>"]
|
136 |
+
self.user_id = self.special_tokens["<|user|>"]
|
137 |
+
self.assistant_id = self.special_tokens["<|assistant|>"]
|
138 |
+
self.end_id = self.special_tokens["<|end|>"]
|
139 |
+
|
140 |
+
@cached_property
|
141 |
+
def dummy_token_indices(self) -> List[int]:
|
142 |
+
# There are some additional special tokens in the cl100k_base tokenizer
|
143 |
+
# that we do not use. Hence, we also consider them to be dummy tokens.
|
144 |
+
additional_tokens = [
|
145 |
+
"<|fim_prefix|>",
|
146 |
+
"<|fim_middle|>",
|
147 |
+
"<|fim_suffix|>",
|
148 |
+
"<|endofprompt|>"
|
149 |
+
]
|
150 |
+
dummy_token_indices = [index for token, index in self.special_tokens.items() if "dummy_id" in token]
|
151 |
+
dummy_token_indices.extend([self.special_tokens[token] for token in additional_tokens])
|
152 |
+
return sorted(dummy_token_indices)
|
153 |
+
|
154 |
+
def __getstate__(self):
|
155 |
+
state = self.__dict__.copy()
|
156 |
+
del state["tokenizer"]
|
157 |
+
return state
|
158 |
+
|
159 |
+
def __setstate__(self, state):
|
160 |
+
self.__dict__ = state
|
161 |
+
enc = tiktoken.Encoding(
|
162 |
+
name="cl100k_im",
|
163 |
+
pat_str=self.pat_str,
|
164 |
+
mergeable_ranks=self.mergeable_ranks,
|
165 |
+
special_tokens=self.special_tokens,
|
166 |
+
)
|
167 |
+
self.tokenizer = enc
|
168 |
+
|
169 |
+
def __len__(self):
|
170 |
+
return self.tokenizer.n_vocab
|
171 |
+
|
172 |
+
@classmethod
|
173 |
+
def from_pretrained(
|
174 |
+
cls,
|
175 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
176 |
+
*init_inputs,
|
177 |
+
**kwargs,
|
178 |
+
):
|
179 |
+
cls_kwargs = kwargs
|
180 |
+
# First try to load from the tokenization config if it exists
|
181 |
+
tokenization_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
|
182 |
+
if tokenization_config:
|
183 |
+
cls_kwargs.update(
|
184 |
+
dict(
|
185 |
+
model_max_length=tokenization_config["model_max_length"],
|
186 |
+
chat_template=tokenization_config.get("chat_template", None)
|
187 |
+
)
|
188 |
+
)
|
189 |
+
else:
|
190 |
+
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
|
191 |
+
cls_kwargs["model_max_length"] = config.max_position_embeddings
|
192 |
+
return cls(**cls_kwargs)
|
193 |
+
|
194 |
+
def get_vocab(self) -> Dict[Union[str, bytes], int]:
|
195 |
+
return {**self.mergeable_ranks, **self.special_tokens}
|
196 |
+
|
197 |
+
def convert_tokens_to_ids(
|
198 |
+
self,
|
199 |
+
tokens: Union[bytes, str, List[Union[bytes, str]]]
|
200 |
+
) -> Union[int, List[int]]:
|
201 |
+
ids = []
|
202 |
+
if isinstance(tokens, (str, bytes)):
|
203 |
+
if tokens in self.special_tokens:
|
204 |
+
return self.special_tokens[tokens]
|
205 |
+
else:
|
206 |
+
return self.mergeable_ranks.get(tokens)
|
207 |
+
ids: List[int] = []
|
208 |
+
for token in tokens:
|
209 |
+
ids.append(self.convert_tokens_to_ids(token))
|
210 |
+
return ids
|
211 |
+
|
212 |
+
def _add_tokens(
|
213 |
+
self,
|
214 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
215 |
+
special_tokens: bool = False,
|
216 |
+
) -> int:
|
217 |
+
if not special_tokens and new_tokens:
|
218 |
+
raise ValueError("Only special tokens can be added to this tokenizer")
|
219 |
+
for token in new_tokens:
|
220 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
221 |
+
if surface_form not in self.special_tokens:
|
222 |
+
raise ValueError(
|
223 |
+
"For now, we do not support unknown special tokens\n"
|
224 |
+
"In the future, if there is a need for this, we can add special tokens to the tokenizer\n"
|
225 |
+
"starting from rank 100261 - 100263 and then 100266 - 100275.\n"
|
226 |
+
"And finally, we can re-construct the enc object back\n"
|
227 |
+
)
|
228 |
+
return 0
|
229 |
+
|
230 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
231 |
+
file_path = os.path.join(save_directory, "cl100k_base.tiktoken")
|
232 |
+
with open(file_path, "w") as f:
|
233 |
+
for token, rank in self.mergeable_ranks.items():
|
234 |
+
line = base64.b64encode(token).decode("utf-8") + " " + str(rank) + "\n"
|
235 |
+
f.write(line)
|
236 |
+
return (file_path,)
|
237 |
+
|
238 |
+
def tokenize(
|
239 |
+
self,
|
240 |
+
text: str,
|
241 |
+
allowed_special: Union[Set, str] = "all",
|
242 |
+
disallowed_special: Union[Collection, str] = (),
|
243 |
+
**kwargs
|
244 |
+
) -> List[Union[bytes, str]]:
|
245 |
+
tokens: List[Union[bytes, str]] = []
|
246 |
+
for token_id in self.tokenizer.encode(
|
247 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
248 |
+
):
|
249 |
+
tokens.append(self.decoder[token_id])
|
250 |
+
return tokens
|
251 |
+
|
252 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
253 |
+
"""
|
254 |
+
Converts a sequence of tokens in a single string.
|
255 |
+
"""
|
256 |
+
text = ""
|
257 |
+
temp = b""
|
258 |
+
for t in tokens:
|
259 |
+
if isinstance(t, str):
|
260 |
+
if temp:
|
261 |
+
text += temp.decode("utf-8", errors=self.errors)
|
262 |
+
temp = b""
|
263 |
+
text += t
|
264 |
+
elif isinstance(t, bytes):
|
265 |
+
temp += t
|
266 |
+
else:
|
267 |
+
raise TypeError("token should only be of type types or str")
|
268 |
+
if temp:
|
269 |
+
text += temp.decode("utf-8", errors=self.errors)
|
270 |
+
return text
|
271 |
+
|
272 |
+
@property
|
273 |
+
def vocab_size(self):
|
274 |
+
return self.tokenizer.n_vocab
|
275 |
+
|
276 |
+
@property
|
277 |
+
def eos_token_id(self) -> int:
|
278 |
+
return self.eod_id
|
279 |
+
|
280 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
281 |
+
"""Converts an id to a token, special tokens included"""
|
282 |
+
if index in self.decoder:
|
283 |
+
return self.decoder[index]
|
284 |
+
raise ValueError("unknown ids")
|
285 |
+
|
286 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
287 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
288 |
+
if token in self.special_tokens:
|
289 |
+
return self.special_tokens[token]
|
290 |
+
if token in self.mergeable_ranks:
|
291 |
+
return self.mergeable_ranks[token]
|
292 |
+
raise ValueError("unknown token")
|
293 |
+
|
294 |
+
def _tokenize(self, text: str, **kwargs):
|
295 |
+
"""
|
296 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
297 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
298 |
+
Do NOT take care of added tokens.
|
299 |
+
"""
|
300 |
+
raise NotImplementedError
|
301 |
+
|
302 |
+
def _decode(
|
303 |
+
self,
|
304 |
+
token_ids: Union[int, List[int]],
|
305 |
+
skip_special_tokens: bool = False,
|
306 |
+
errors: str = None,
|
307 |
+
**kwargs,
|
308 |
+
) -> str:
|
309 |
+
if isinstance(token_ids, int):
|
310 |
+
token_ids = [token_ids]
|
311 |
+
if skip_special_tokens:
|
312 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
313 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
314 |
+
|
315 |
+
|