pszemraj's picture
Update README.md
b8aa019
|
raw
history blame
3.25 kB
metadata
license: apache-2.0
base_model: pszemraj/random-mega-small-2048
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: PT-simple_wikipedia_LM-random-mega-small-2048-MR0.50-C1024-tk_id
    results: []
datasets:
  - pszemraj/simple_wikipedia_LM

mega-small-2048 on simple wikipedia

This model is a fine-tuned version of pszemraj/random-mega-small-2048 on the pszemraj/simple_wikipedia_LM dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4773
  • Accuracy: 0.4591

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 3208
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
7.2691 0.11 50 7.1000 0.0677
7.1597 0.22 100 6.8388 0.0794
6.5476 0.33 150 6.4004 0.1359
6.5335 0.44 200 6.1776 0.1708
5.7228 0.55 250 5.6106 0.2437
5.4574 0.66 300 5.1391 0.2884
5.2275 0.78 350 4.8626 0.3174
4.9589 0.89 400 4.6454 0.3374
4.6406 1.0 450 4.4498 0.3578
4.8251 1.11 500 4.3055 0.3706
4.4728 1.22 550 4.1877 0.3821
4.3975 1.33 600 4.0709 0.3955
4.4245 1.44 650 3.9909 0.4045
4.2613 1.55 700 3.8976 0.4128
4.1806 1.66 750 3.8515 0.4177
3.9469 1.77 800 3.7883 0.4227
3.9563 1.88 850 3.7314 0.4306
4.0063 1.99 900 3.6975 0.4336
3.9274 2.1 950 3.6561 0.4378
3.788 2.21 1000 3.6280 0.4410
3.8711 2.33 1050 3.5736 0.4467
3.8623 2.44 1100 3.5535 0.4496
3.8575 2.55 1150 3.5407 0.4521
4.0079 2.66 1200 3.5172 0.4543
3.8265 2.77 1250 3.4786 0.4591
3.9513 2.88 1300 3.4741 0.4578
3.554 2.99 1350 3.4773 0.4591

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.2.0.dev20230907+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3