pszemraj's picture
Update README.md
db5a103 verified
|
raw
history blame
779 Bytes
metadata
license: apache-2.0
datasets:
  - HuggingFaceTB/smollm-corpus
language:
  - en
pipeline_tag: text2text-generation
library_name: transformers

tFINE-900m-e16-d32-1024ctx

Pretrained T5 model with nanoT5:

  • ~900m parameters, 16 layers in encoder, 32 layers in decoder
  • sentencepiece tokenizer with 48k vocab & byte-pair fallback
    • handles whitespaces etc correctly (unlike standard T5 tokenizer)
  • 1024 ctx during pretrain
  • relative_attention_num_buckets increased to 48 from standard 32 for context length upscaling

Experiment logs

Training consisted of two phases:

  • phase one - ~30k steps at context length 512
  • phase two - 20k steps at context length 1024