Llama-3.1-8B-Instruct-EI1-120K-fix-32gpus-20ep
This model is a fine-tuned version of NousResearch/Meta-Llama-3.1-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.6790
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-06
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 32
- total_train_batch_size: 64
- total_eval_batch_size: 256
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.2924 | 100 | 0.5265 |
No log | 0.5848 | 200 | 0.4605 |
No log | 0.8772 | 300 | 0.4265 |
No log | 1.1696 | 400 | 0.4117 |
0.4742 | 1.4620 | 500 | 0.4032 |
0.4742 | 1.7544 | 600 | 0.3976 |
0.4742 | 2.0468 | 700 | 0.4008 |
0.4742 | 2.3392 | 800 | 0.4005 |
0.4742 | 2.6316 | 900 | 0.3961 |
0.3557 | 2.9240 | 1000 | 0.3943 |
0.3557 | 3.2164 | 1100 | 0.4090 |
0.3557 | 3.5088 | 1200 | 0.4074 |
0.3557 | 3.8012 | 1300 | 0.4064 |
0.3557 | 4.0936 | 1400 | 0.4312 |
0.303 | 4.3860 | 1500 | 0.4329 |
0.303 | 4.6784 | 1600 | 0.4324 |
0.303 | 4.9708 | 1700 | 0.4301 |
0.303 | 5.2632 | 1800 | 0.4761 |
0.303 | 5.5556 | 1900 | 0.4755 |
0.2542 | 5.8480 | 2000 | 0.4737 |
0.2542 | 6.1404 | 2100 | 0.5378 |
0.2542 | 6.4327 | 2200 | 0.5374 |
0.2542 | 6.7251 | 2300 | 0.5393 |
0.2542 | 7.0175 | 2400 | 0.6218 |
0.1892 | 7.3099 | 2500 | 0.6207 |
0.1892 | 7.6023 | 2600 | 0.6277 |
0.1892 | 7.8947 | 2700 | 0.6202 |
0.1892 | 8.1871 | 2800 | 0.7137 |
0.1892 | 8.4795 | 2900 | 0.7203 |
0.1318 | 8.7719 | 3000 | 0.7195 |
0.1318 | 9.0643 | 3100 | 0.8267 |
0.1318 | 9.3567 | 3200 | 0.8213 |
0.1318 | 9.6491 | 3300 | 0.8221 |
0.1318 | 9.9415 | 3400 | 0.8276 |
0.0824 | 10.2339 | 3500 | 0.9402 |
0.0824 | 10.5263 | 3600 | 0.9379 |
0.0824 | 10.8187 | 3700 | 0.9340 |
0.0824 | 11.1111 | 3800 | 1.0448 |
0.0824 | 11.4035 | 3900 | 1.0511 |
0.0483 | 11.6959 | 4000 | 1.0520 |
0.0483 | 11.9883 | 4100 | 1.0641 |
0.0483 | 12.2807 | 4200 | 1.1640 |
0.0483 | 12.5731 | 4300 | 1.1574 |
0.0483 | 12.8655 | 4400 | 1.1667 |
0.0294 | 13.1579 | 4500 | 1.2525 |
0.0294 | 13.4503 | 4600 | 1.2659 |
0.0294 | 13.7427 | 4700 | 1.2635 |
0.0294 | 14.0351 | 4800 | 1.3617 |
0.0294 | 14.3275 | 4900 | 1.3559 |
0.0195 | 14.6199 | 5000 | 1.3651 |
0.0195 | 14.9123 | 5100 | 1.3715 |
0.0195 | 15.2047 | 5200 | 1.4419 |
0.0195 | 15.4971 | 5300 | 1.4471 |
0.0195 | 15.7895 | 5400 | 1.4583 |
0.0152 | 16.0819 | 5500 | 1.5293 |
0.0152 | 16.3743 | 5600 | 1.5350 |
0.0152 | 16.6667 | 5700 | 1.5373 |
0.0152 | 16.9591 | 5800 | 1.5497 |
0.0152 | 17.2515 | 5900 | 1.6156 |
0.0124 | 17.5439 | 6000 | 1.6219 |
0.0124 | 17.8363 | 6100 | 1.6184 |
0.0124 | 18.1287 | 6200 | 1.6552 |
0.0124 | 18.4211 | 6300 | 1.6616 |
0.0124 | 18.7135 | 6400 | 1.6637 |
0.0108 | 19.0058 | 6500 | 1.6645 |
0.0108 | 19.2982 | 6600 | 1.6776 |
0.0108 | 19.5906 | 6700 | 1.6790 |
0.0108 | 19.8830 | 6800 | 1.6790 |
Framework versions
- Transformers 4.43.4
- Pytorch 2.4.0+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 6
Model tree for qfq/Llama-3.1-8B-Instruct-EI1-120K-fix-32gpus-20ep
Base model
NousResearch/Meta-Llama-3.1-8B-Instruct