File size: 8,069 Bytes
440604d
 
 
 
 
 
 
 
 
 
 
 
 
d9d82d2
440604d
 
 
 
 
 
37ed39e
440604d
 
 
 
 
 
 
 
 
 
 
 
 
ce22a9f
440604d
37ed39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440604d
53a0ca3
 
440604d
 
 
 
 
 
fb266b3
440604d
 
 
fb266b3
440604d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37ed39e
 
 
 
 
 
 
 
 
 
 
440604d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37ed39e
440604d
37ed39e
 
 
 
440604d
 
 
 
 
37ed39e
 
440604d
92f6500
440604d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
datasets:
- cityscapes
library_name: pytorch
license: bsd-3-clause
pipeline_tag: image-segmentation
tags:
- quantized
- real_time
- android

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/ffnet_78s_quantized/web-assets/model_demo.png)

# FFNet-78S-Quantized: Optimized for Mobile Deployment
## Semantic segmentation for automotive street scenes

FFNet-78S-Quantized is a "fuss-free network" that segments street scene images with per-pixel classes like road, sidewalk, and pedestrian. Trained on the Cityscapes dataset.

This model is an implementation of FFNet-78S-Quantized found [here]({source_repo}).
This repository provides scripts to run FFNet-78S-Quantized on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/ffnet_78s_quantized).


### Model Details

- **Model Type:** Semantic segmentation
- **Model Stats:**
  - Model checkpoint: ffnet78S_dBBB_cityscapes_state_dict_quarts
  - Input resolution: 2048x1024
  - Number of parameters: 27.5M
  - Model size: 26.7 MB
  - Number of output classes: 19

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| FFNet-78S-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 5.745 ms | 0 - 2 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
| FFNet-78S-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 11.963 ms | 0 - 24 MB | INT8 | NPU | [FFNet-78S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.onnx) |
| FFNet-78S-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 4.089 ms | 1 - 86 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
| FFNet-78S-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 8.58 ms | 5 - 151 MB | INT8 | NPU | [FFNet-78S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.onnx) |
| FFNet-78S-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 35.597 ms | 1 - 48 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
| FFNet-78S-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 218.427 ms | 1 - 3 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
| FFNet-78S-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 5.683 ms | 1 - 2 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
| FFNet-78S-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 5.752 ms | 1 - 3 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
| FFNet-78S-Quantized | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 5.787 ms | 0 - 2 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
| FFNet-78S-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 5.717 ms | 1 - 3 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
| FFNet-78S-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 7.035 ms | 1 - 90 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
| FFNet-78S-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 3.501 ms | 1 - 38 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
| FFNet-78S-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 8.055 ms | 7 - 76 MB | INT8 | NPU | [FFNet-78S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.onnx) |
| FFNet-78S-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 12.351 ms | 22 - 22 MB | INT8 | NPU | [FFNet-78S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.onnx) |




## Installation

This model can be installed as a Python package via pip.

```bash
pip install "qai-hub-models[ffnet_78s_quantized]"
```



## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.ffnet_78s_quantized.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.ffnet_78s_quantized.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.ffnet_78s_quantized.export
```
```
Profiling Results
------------------------------------------------------------
FFNet-78S-Quantized
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 5.7                    
Estimated peak memory usage (MB): [0, 2]                 
Total # Ops                     : 156                    
Compute Unit(s)                 : NPU (156 ops)          
```





## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on FFNet-78S-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/ffnet_78s_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of FFNet-78S-Quantized can be found [here](https://github.com/Qualcomm-AI-research/FFNet/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Simple and Efficient Architectures for Semantic Segmentation](https://arxiv.org/abs/2206.08236)
* [Source Model Implementation](https://github.com/Qualcomm-AI-research/FFNet)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).