Segment-Anything-Model: Optimized for Mobile Deployment
High-quality segmentation mask generation around any object in an image with simple input prompt
Transformer based encoder-decoder where prompts specify what to segment in an image thereby allowing segmentation without the need for additional training. The image encoder generates embeddings and the lightweight decoder operates on the embeddings for point and mask based image segmentation.
This model is an implementation of Segment-Anything-Model found here.
This repository provides scripts to run Segment-Anything-Model on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Semantic segmentation
- Model Stats:
- Model checkpoint: vit_l
- Input resolution: 720p (720x1280)
- Number of parameters (SAMDecoder): 5.11M
- Model size (SAMDecoder): 19.6 MB
Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
SAMDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 29.311 ms | 4 - 40 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 20.843 ms | 4 - 119 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 20.649 ms | 3 - 128 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMDecoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 29.453 ms | 4 - 41 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMDecoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 29.485 ms | 4 - 36 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMDecoder | SA8295P ADP | SA8295P | TFLITE | 36.583 ms | 4 - 114 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMDecoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 29.064 ms | 4 - 37 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMDecoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 33.135 ms | 4 - 126 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 10369.27 ms | 123 - 126 MB | FP32 | CPU | Segment-Anything-Model.tflite |
SAMEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 9136.859 ms | 91 - 1603 MB | FP32 | CPU | Segment-Anything-Model.tflite |
SAMEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 6694.41 ms | 110 - 1589 MB | FP32 | CPU | Segment-Anything-Model.tflite |
SAMEncoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 10714.354 ms | 122 - 381 MB | FP32 | CPU | Segment-Anything-Model.tflite |
SAMEncoder | SA7255P ADP | SA7255P | TFLITE | 17192.024 ms | 125 - 1597 MB | FP32 | CPU | Segment-Anything-Model.tflite |
SAMEncoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 11081.197 ms | 124 - 127 MB | FP32 | CPU | Segment-Anything-Model.tflite |
SAMEncoder | SA8295P ADP | SA8295P | TFLITE | 10359.771 ms | 124 - 1654 MB | FP32 | CPU | Segment-Anything-Model.tflite |
SAMEncoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 10872.614 ms | 118 - 125 MB | FP32 | CPU | Segment-Anything-Model.tflite |
SAMEncoder | SA8775P ADP | SA8775P | TFLITE | 13361.634 ms | 124 - 1596 MB | FP32 | CPU | Segment-Anything-Model.tflite |
SAMEncoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 16830.94 ms | 82 - 1648 MB | FP32 | CPU | Segment-Anything-Model.tflite |
Installation
This model can be installed as a Python package via pip.
pip install "qai-hub-models[sam]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.sam.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.sam.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.sam.export
Profiling Results
------------------------------------------------------------
SAMDecoder
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 29.3
Estimated peak memory usage (MB): [4, 40]
Total # Ops : 337
Compute Unit(s) : NPU (337 ops)
------------------------------------------------------------
SAMEncoder
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 10369.3
Estimated peak memory usage (MB): [123, 126]
Total # Ops : 818
Compute Unit(s) : GPU (36 ops) CPU (782 ops)
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.sam import Model
# Load the model
model = Model.from_pretrained()
get_sam_decoder()_model = model.get_sam_decoder()
get_sam_encoder()_model = model.get_sam_encoder()
# Device
device = hub.Device("Samsung Galaxy S23")
# Trace model
get_sam_decoder()_input_shape = get_sam_decoder()_model.get_input_spec()
get_sam_decoder()_sample_inputs = get_sam_decoder()_model.sample_inputs()
traced_get_sam_decoder()_model = torch.jit.trace(get_sam_decoder()_model, [torch.tensor(data[0]) for _, data in get_sam_decoder()_sample_inputs.items()])
# Compile model on a specific device
get_sam_decoder()_compile_job = hub.submit_compile_job(
model=traced_get_sam_decoder()_model ,
device=device,
input_specs=get_sam_decoder()_model.get_input_spec(),
)
# Get target model to run on-device
get_sam_decoder()_target_model = get_sam_decoder()_compile_job.get_target_model()
# Trace model
get_sam_encoder()_input_shape = get_sam_encoder()_model.get_input_spec()
get_sam_encoder()_sample_inputs = get_sam_encoder()_model.sample_inputs()
traced_get_sam_encoder()_model = torch.jit.trace(get_sam_encoder()_model, [torch.tensor(data[0]) for _, data in get_sam_encoder()_sample_inputs.items()])
# Compile model on a specific device
get_sam_encoder()_compile_job = hub.submit_compile_job(
model=traced_get_sam_encoder()_model ,
device=device,
input_specs=get_sam_encoder()_model.get_input_spec(),
)
# Get target model to run on-device
get_sam_encoder()_target_model = get_sam_encoder()_compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
get_sam_decoder()_profile_job = hub.submit_profile_job(
model=get_sam_decoder()_target_model,
device=device,
)
get_sam_encoder()_profile_job = hub.submit_profile_job(
model=get_sam_encoder()_target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
get_sam_decoder()_input_data = get_sam_decoder()_model.sample_inputs()
get_sam_decoder()_inference_job = hub.submit_inference_job(
model=get_sam_decoder()_target_model,
device=device,
inputs=get_sam_decoder()_input_data,
)
get_sam_decoder()_inference_job.download_output_data()
get_sam_encoder()_input_data = get_sam_encoder()_model.sample_inputs()
get_sam_encoder()_inference_job = hub.submit_inference_job(
model=get_sam_encoder()_target_model,
device=device,
inputs=get_sam_encoder()_input_data,
)
get_sam_encoder()_inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.sam.demo --on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.sam.demo -- --on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Segment-Anything-Model's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Segment-Anything-Model can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.