quangcodecode's picture
End of training
a1ce33e
|
raw
history blame
2.39 kB
metadata
base_model: vinai/phobert-base-v2
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: phobert-base-v2-finetuned-ner-thesis-dseb
    results: []

phobert-base-v2-finetuned-ner-thesis-dseb

This model is a fine-tuned version of vinai/phobert-base-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3842
  • Precision: 0.75
  • Recall: 0.8329
  • F1: 0.7893
  • Accuracy: 0.9491

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
2.0671 1.0 23 1.4715 0.0 0.0 0.0 0.6125
1.3776 2.0 46 0.9706 0.9471 0.3860 0.5485 0.7545
0.9833 3.0 69 0.6568 0.8144 0.7207 0.7647 0.9034
0.7423 4.0 92 0.4905 0.9215 0.9045 0.9130 0.9595
0.5928 5.0 115 0.3919 0.9626 0.9517 0.9572 0.9893
0.4955 6.0 138 0.3377 0.9658 0.9579 0.9619 0.9913
0.4013 7.0 161 0.3058 0.9658 0.9579 0.9619 0.9915
0.3747 8.0 184 0.2874 0.9658 0.9579 0.9619 0.9915
0.3618 9.0 207 0.2781 0.9658 0.9579 0.9619 0.9915
0.3477 10.0 230 0.2748 0.9658 0.9579 0.9619 0.9915

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0