Edit model card

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
Relegious
  • 'Badc Jame Masjid'
  • 'Modina Masjid'
  • 'Baitul Ehsan Jame Masjid'
Food
  • 'Bombay Biriyani Restaurant'
  • 'Sanim Ghorowa Reatora'
  • 'Attel Mati Restaurant'
Religious PLAce
  • 'Darbar Sharif(Dorbeshe Badsha)'
  • 'Mazar'
Education
  • 'The English Academy'
  • 'Economics Batch'
  • 'Al Manar Model School'
Health Care
  • 'Hope Haspital'
  • 'North Para Community Clinic'
  • 'Al Sami Medical Hall'
Office
  • 'Nari Maitri Dholpur Branch'
  • 'Techsam IT And Computer'
  • 'Chandpur It'
Landmark
  • 'Godaun Moar'
  • 'Kuril Flyover U Turn Bridge'
  • 'Manik Miya Avenue Moar'
Fuel
  • 'Mimi Enterprise'
  • 'Sariful Filling Station'
  • 'M/s Aruja Enterprise'
Religious Place
  • 'Kabbir Khan Jame Masjid'
  • 'Sri Sri Nayanta Babar Mandir'
  • 'Jordan Church of Christ'
Transportation
  • 'Lala Khal Ferry Terminal'
  • 'Porshuram Cng Stand'
  • 'Riad Cycle Garage'
Agricultural
  • 'Catlle Farm'
  • 'Pushon Narsari'
  • 'Vegetable garden'
Residential
  • 'Ovinondon Chattrabas'
  • 'TH Chattrabas'
  • 'Seven Star Chattrabas'
shop
  • 'Mayer Doya Store'
Bank
  • 'Dutch Bangla Bank Limited Maijde (DBBL)'
  • 'Jamuna Bank Limited Dholaikhal Branch'
  • 'Prime Bank Limited Elephant Branch'
Utility
  • 'Shahi Eidgah Water Tank'
  • 'Pole No 31'
  • 'Kalmilata Kacha Bazar'
Healthcare
  • 'Oloukik'
  • 'Burhanuddin Upazila Health Complex'
  • 'Dr Nazmin Akter Najma'
Government
  • 'Zilla Parishad Karjaloy Bhola'
  • "Sub Police Commissioner's Bhaban (Tejgaon Branch)"
  • 'Family Planning Office Satkhira'
Recreation
  • 'Shaikh Rasel Sriti Shongho'
  • 'Beraid Camping And Kayaking Zone (BCKZ)'
  • 'Shohag Palli Picnic Spot & Resort'
Religious
  • 'Baitul Mamur Jame Masjid'
  • 'Petrol Pump Jame Masjid'
  • 'Opsonnin Pharma Ltd Jame Masjid'
Religious Place
  • 'Jame Masjid'
  • 'Hospital Masjid'
  • 'Badar Mokam Jame Masjid'
Shop
  • 'Nayeem General Store'
  • 'Bazlu Engineering & Refrigeration'
  • 'Mukta Dulal'
Commercial
  • 'Mazar Kacha Bazar'
  • 'Fall Bazar Kola Potti'
  • 'Venus Autos'
Industry
  • 'Rn Integrated Argo'
  • 'Fresh Dairy Firm'
  • 'Hemple Rhee Mfg Limited'
Hotel
  • 'Warisan'
  • 'Hotel New London Palace Abashik'
  • 'Sada Vat'
construction
  • 'Fahim Hardware Store'
  • 'O A Frame Gallery'
Construction
  • 'Khalil Steel'
  • 'Sanaullah Tiles And Sanitary House'
  • 'Mukta Glass And Thai Aluminum'
Relegious Place
  • 'Baitul Atiq Jam-E Masjid'
  • 'Hathazari Bus Stand Baitussalam Jame Masjid'
  • 'Osman Bin Affan Jame Masjid'
education
  • 'Masum Electronic'

Evaluation

Metrics

Label Accuracy
all 0.33

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("rafi138/setfit-paraphrase-mpnet-base-v2-type")
# Run inference
preds = model("Dadon Hotel")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 3.5 7
Label Training Sample Count
ShopCommercialGovernmentHealthcareEducationFoodOfficeReligious PlaceBankTransportationConstructionIndustryResidentialLandmarkRecreationFuelHotelUtilityAgricultural 0

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0006 1 0.1851 -
0.0282 50 0.1697 -
0.0564 100 0.1876 -
0.0032 1 0.169 -
0.1597 50 0.081 -
0.3195 100 0.0641 -
0.4792 150 0.033 -
0.6390 200 0.0128 -
0.7987 250 0.0089 -
0.9585 300 0.0106 -
1.0 313 - 0.3235
1.1182 350 0.0215 -
1.2780 400 0.017 -
1.4377 450 0.0057 -
1.5974 500 0.0047 -
1.7572 550 0.0064 -
1.9169 600 0.003 -
2.0 626 - 0.3481
2.0767 650 0.0043 -
2.2364 700 0.0022 -
2.3962 750 0.0014 -
2.5559 800 0.0028 -
2.7157 850 0.0018 -
2.8754 900 0.002 -
3.0 939 - 0.3393
3.0351 950 0.0294 -
3.1949 1000 0.002 -
3.3546 1050 0.0017 -
3.5144 1100 0.0017 -
3.6741 1150 0.0015 -
3.8339 1200 0.0013 -
3.9936 1250 0.0014 -
4.0 1252 - 0.348
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.2
  • PyTorch: 2.1.0+cu121
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
7
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rafi138/setfit-paraphrase-mpnet-base-v2-type

Finetuned
(247)
this model

Evaluation results