File size: 2,631 Bytes
5f0cd59 1e6518e 6271cde e019e3b c08b06f 98f8941 1e6518e 1e300e7 55d6665 1e300e7 55d6665 3e63368 55d6665 338b199 55d6665 3e63368 55d6665 c08b06f 1e300e7 4557fc9 1e300e7 338b199 1e300e7 4557fc9 1e6518e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: mit
---
**NLI-Mixer** is an attempt to tackle the Natural Language Inference (NLI) task by mixing multiple datasets together.
The approach is simple:
1. Combine all available NLI data without any domain-dependent re-balancing or re-weighting.
2. Finetune several SOTA transformers of different sizes (20m parameters to 300m parameters) on the combined data.
3. Evaluate on challenging NLI datasets.
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class. It is based on [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base).
### Data
20+ NLI datasets were combined to train a binary classification model. The `contradiction` and `neutral` labels were combined to form a `non-entailment` class.
### Usage
In Transformers
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from torch.nn.functional import softmax, sigmoid
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name="ragarwal/deberta-v3-base-nli-mixer-binary"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
sentence = "During its monthly call, the National Oceanic and Atmospheric Administration warned of \
increased temperatures and low precipitation"
labels = ["Computer", "Climate Change", "Tablet", "Football", "Artificial Intelligence", "Global Warming"]
features = tokenizer([[sentence, l] for l in labels], padding=True, truncation=True, return_tensors="pt")
model.eval()
with torch.no_grad():
scores = model(**features).logits
print("Multi-Label:", sigmoid(scores)) #Multi-Label Classification
print("Single-Label:", softmax(scores, dim=0)) #Single-Label Classification
#Multi-Label: tensor([[0.0412],[0.2436],[0.0394],[0.0020],[0.0050],[0.1424]])
#Single-Label: tensor([[0.0742],[0.5561],[0.0709],[0.0035],[0.0087],[0.2867]])
```
In Sentence-Transformers
```python
from sentence_transformers import CrossEncoder
model_name="ragarwal/deberta-v3-base-nli-mixer-binary"
model = CrossEncoder(model_name, max_length=256)
sentence = "During its monthly call, the National Oceanic and Atmospheric Administration warned of \
increased temperatures and low precipitation"
labels = ["Computer", "Climate Change", "Tablet", "Football", "Artificial Intelligence", "Global Warming"]
scores = model.predict([[sentence, l] for l in labels])
print(scores)
#array([0.04118565, 0.2435827 , 0.03941465, 0.00203637, 0.00501176, 0.1423797], dtype=float32)
``` |