bert-finetuned-ner / README.md
rdpatilds's picture
update model card README.md
281d4f7
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.931045859452326
- name: Recall
type: recall
value: 0.9498485358465163
- name: F1
type: f1
value: 0.9403532155948018
- name: Accuracy
type: accuracy
value: 0.9864455171601814
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0556
- Precision: 0.9310
- Recall: 0.9498
- F1: 0.9404
- Accuracy: 0.9864
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2222 | 1.0 | 878 | 0.0678 | 0.9042 | 0.9323 | 0.9181 | 0.9814 |
| 0.0452 | 2.0 | 1756 | 0.0543 | 0.9229 | 0.9453 | 0.9340 | 0.9857 |
| 0.0263 | 3.0 | 2634 | 0.0556 | 0.9310 | 0.9498 | 0.9404 | 0.9864 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3