AdaVocab-Gemma-2b-1024 / ada_vocab_factory.py
reflectio's picture
Update ada_vocab_factory.py (#1)
cc33ca4 verified
raw
history blame
18.9 kB
import math
import warnings
import hashlib
import os
from typing import List, Optional, Tuple, Union
from dataclasses import dataclass
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.models.llama.modeling_llama import LlamaModel, LlamaPreTrainedModel, LlamaForCausalLM
from transformers.models.gemma.modeling_gemma import GemmaModel, GemmaPreTrainedModel, GemmaForCausalLM
from transformers.models.qwen2.modeling_qwen2 import Qwen2Model, Qwen2PreTrainedModel, Qwen2ForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.cache_utils import Cache
# from models.modeling_gemma import GemmaForCausalLM
# from models.modeling_qwen2 import Qwen2ForCausalLM
def svd_with_cache(matrix, cache_dir, max_rank=1024):
"""
SVD with cache mechanism to avoid repeated SVD computation.
SVD can be very slow for large matrices, so we cache the results.
"""
in_dim, out_dim = matrix.shape
# slice_weight = matrix[::1000, :] # too sensitive to precision
# weight_hash = hashlib.md5(slice_weight.detach().cpu().numpy().tobytes()).hexdigest()
weight_hash = in_dim * out_dim
cache_file = os.path.join(cache_dir, f'{weight_hash}.pt')
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)
if os.path.exists(cache_file):
# Load cached SVD results
U, S, Vh = torch.load(cache_file)
else:
# Perform SVD and cache the results
U, S, Vh = torch.linalg.svd(matrix.float())
U = U[:, :max_rank].clone() # Shape: [out_features, rank]
S = S[:max_rank].clone() # Shape: [rank]
Vh = Vh[:max_rank, :].clone() # Shape: [rank, in_features]
# Save the SVD results to cache
torch.save((U, S, Vh), cache_file)
return U, S, Vh
def create_factorized_compression_for_linear(source_linear, rank, svd_cache_dir='experiment_cache/'):
"""
Adapt from: https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/cli_svd.py
Create a factorized compression for a given linear layer using SVD.
Args:
source_linear (nn.Linear): The original linear layer to be compressed.
rank (int, optional): The rank for the factorization. If None, it will be calculated based on rank_factor.
rank_factor (float, optional): The factor to determine the rank if rank is not provided. Default is 0.3.
Returns:
nn.Sequential: A sequential container of the compressed linear layers.
"""
with torch.no_grad():
dtype = source_linear.weight.dtype
# Check if the source linear layer has a bias term
if hasattr(source_linear, 'bias'):
bias = source_linear.bias
else:
bias = None
# Calculate the total number of parameters in the source linear layer
source_num_params = sum(param.numel() for param in source_linear.parameters())
# Get the weight matrix of the source linear layer
source_linear_weight = source_linear.weight.data
# Ensure rank is less than the minimum dimension of the weight matrix
assert rank < min(source_linear_weight.shape)
# Perform SVD on the weight matrix
# U, S, Vh = torch.linalg.svd(source_linear_weight.float())
U, S, Vh = svd_with_cache(source_linear_weight, svd_cache_dir)
# Truncate U, S, Vh to the specified rank
U = U[:, :rank].contiguous() # Shape: [out_features, rank]
S = S[:rank].contiguous() # Shape: [rank]
Vh = Vh[:rank, :].contiguous() # Shape: [rank, in_features]
# Incorporate singular values into U
U = U @ torch.diag(S) # Shape: [out_features, rank]
# Flatten U and Vh for quantile computation
U_flatten = U.flatten()
Vh_flatten = Vh.flatten()
# Define the maximum quantization size
max_quant_size = 2**23
# Compute high and low quantile values for clamping
if len(U_flatten) + len(Vh_flatten) >= max_quant_size:
dist2 = U_flatten[:min(len(U_flatten), max_quant_size)]
dist3 = Vh_flatten[:min(len(Vh_flatten), max_quant_size)]
hi_val = max(torch.quantile(dist3, 1), torch.quantile(dist2, 1))
else:
dist = torch.cat([U_flatten, Vh_flatten])
hi_val = torch.quantile(dist, 1)
low_val = -hi_val
# Clamp U and Vh to the quantile values
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
# Create the down projection linear layer (Vh)
lora_down = nn.Linear(Vh.shape[1], Vh.shape[0], dtype=dtype, bias=False, device=source_linear_weight.device)
lora_down.weight.data = Vh.to(device=source_linear_weight.device, dtype=dtype)
# Create the up projection linear layer (U)
lora_up = nn.Linear(U.shape[1], U.shape[0], dtype=dtype, bias=bias is not None, device=source_linear_weight.device)
lora_up.weight.data = U.to(device=source_linear_weight.device, dtype=dtype)
# If the original linear layer had a bias, copy it to the up projection layer
if bias is not None:
lora_up.bias = nn.Parameter(bias.clone())
# Print compression ratio (for debugging purposes)
#print('compression', sum(param.numel() for param in ret.parameters()) / source_num_params)
return lora_down, lora_up
@dataclass
class AdaCausalLMOutputWithPast(CausalLMOutputWithPast):
# keep original `loss` for `training_step` and `predictions_step`,
# Add 3 sub losses: `lm_loss`, `mask_loss`, `topk_loss`
# add `lm_head_logits` for original lm_head logits, which is optional (required for train and eval, not required for generation)
lm_head_logits: Optional[torch.FloatTensor] = None
lm_loss: Optional[torch.FloatTensor] = None
mask_loss: Optional[torch.FloatTensor] = None
topk_loss: Optional[torch.FloatTensor] = None
class AdaVocabHead_MLP(nn.Module):
# No improvement compare to LoRA solution
def __init__(self, lm_head, sub_vocab_dim, activation_func=torch.nn.GELU()):
hidden_size, vocab_size = lm_head.in_features, lm_head.out_features
super().__init__()
self.A = nn.Linear(hidden_size, sub_vocab_dim, bias=False)
self.B = nn.Linear(sub_vocab_dim, sub_vocab_dim, bias=True)
self.C = nn.Linear(sub_vocab_dim, vocab_size, bias=False)
std_dev = 1 / math.sqrt(sub_vocab_dim)
nn.init.normal_(self.A.weight, 0, std_dev)
nn.init.normal_(self.B.weight, 0, std_dev)
nn.init.zeros_(self.C.weight)
self.activation_func = activation_func
def forward(self, x):
# x.shape: (..., hidden_size),
# A.shape: (hidden_size, sub_vocab_dim)
# B.shape: (sub_vocab_dim, sub_vocab_dim)
# C.shape: (sub_vocab_dim, vocab_size)
logits = self.A(x) # logits.shape: (..., sub_vocab_dim)
logits = self.activation_func(logits)
logits = self.B(logits) # logits.shape: (..., sub_vocab_dim)
# logits = self.activation_func(logits)
ada_vocab_logits = self.C(logits) # ada_vocab_logits.shape: (..., vocab_size)
return ada_vocab_logits
class AdaVocabHead_LORA(nn.Module):
def __init__(self, lm_head, sub_vocab_dim, svd=False):
hidden_size, vocab_size = lm_head.in_features, lm_head.out_features
super().__init__()
if svd: # SVD initialization
self.A, self.B = create_factorized_compression_for_linear(lm_head, sub_vocab_dim)
else: # Random initialization
self.A = nn.Linear(hidden_size, sub_vocab_dim, bias=False)
self.B = nn.Linear(sub_vocab_dim, vocab_size, bias=False)
std_dev = 1 / math.sqrt(sub_vocab_dim)
nn.init.normal_(self.A.weight, 0, std_dev)
nn.init.zeros_(self.B.weight)
def forward(self, x):
# x.shape: (..., hidden_size), A.shape: (hidden_size, sub_vocab_dim), B.shape: (sub_vocab_dim, vocab_size)
logits = self.A(x)
ada_vocab_logits = self.B(logits) # ada_vocab_logits.shape: (..., vocab_size)
return ada_vocab_logits
def create_AdaVocabCausalLM(base_class): # Support LLama, Qwen2, Gemma
class AdaVocabCausalLM(base_class):
# TODO: Check the function of this variable and if it affects the AdaVocab Head model
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.sub_vocab_dim = config.ADA_DIM
self.offload_tag = False
# AdaVocabHead is already initialized with random weights/ SVD weights
# so no need to use `self.post_init` method after this
if config.ADA_ACT:
self.adavocab_head = AdaVocabHead_MLP(self.lm_head, self.sub_vocab_dim, activation_func=nn.GELU())
else:
self.adavocab_head = AdaVocabHead_LORA(self.lm_head, self.sub_vocab_dim, svd=config.ADA_SVD)
self.freeze_original_model()
def freeze_original_model(self):
# freeze orginal llama except AdaVocabHead
for param in self.model.parameters():
param.requires_grad = False
for param in self.lm_head.parameters():
param.requires_grad = False
for param in self.adavocab_head.parameters():
param.requires_grad = True
def offload_lm_head(self):
self.offload_tag = True
self.lm_head = self.lm_head.to(torch.device('cpu'))
def topk_mask(self, logits):
# logits.shape: (batch_size, seq_len, vocab_size)
topk_values, topk_indices = torch.topk(logits, self.config.ADA_TOPK, dim=-1)
# topk_values.shape, topk_indices.shape: (batch_size, seq_len, topK)
mask = torch.zeros_like(logits) # (batch_size, seq_len, vocab_size)
# Only in top-k positions, put 1 to the corresponding position
mask.scatter_(dim=-1, index=topk_indices, src=torch.ones_like(mask))
return mask
def pred_with_sliced_lm_head_simple(self, ada_logits, hidden_states):
# nll_loss = None
# Limit activated tokens to ADA_TOPK during inference
# ada_logits_mask = self.topk_mask(ada_logits) # (batch_size, seq_len, vocab_size)
ada_logits, topk_indices = torch.topk(ada_logits, self.config.ADA_TOPK, dim=-1) # ada_logits: # (batch_size, seq_len, vocab_size) = # (batch_size, 1, vocab_size)
# ada_logits = ada_logits * ada_logits_mask # (batch_size, seq_len, vocab_size)
# ada_logits = topk_values
# batch_size, seq_len, vocab_size = ada_logits.size()
gt_zero_pos = torch.nonzero(ada_logits[:, -1, :] > 0, as_tuple=True)[-1].shape[0]
ada_index_slice = topk_indices[:, :, :gt_zero_pos].flatten().to(self.lm_head.weight.device) # equivalent to `sigmoid(ada_logits) > 0.5`
# union_ada_index_slice = torch.unique(ada_index_slice).to(self.lm_head.weight.device) # torch_size([union_size])
sliced_lm_head_weight = self.lm_head.weight[ada_index_slice, :].contiguous().to(hidden_states.device) # torch.Size([union_size, hidden_size])
lm_logits_sliced = hidden_states @ sliced_lm_head_weight.T # (batch_size, seq_len, union_size)
return lm_logits_sliced, ada_index_slice
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None, # TODO: check the effect of this new variable
) -> Union[Tuple, CausalLMOutputWithPast]:
# TODO: How does forward know whether is training or inference?
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0] # hidden_states.shape: (batch_size, seq_len, hidden_size)
batch_size, seq_len, _ = hidden_states.size()
vocab_size = self.lm_head.weight.shape[0]
# This activation could be very large during training if vocab_size is large,
# but in inference, storing activation is not needed
# TINGYUAN
self.adavocab_head.A.to(hidden_states.device)
self.adavocab_head.B.to(hidden_states.device)
ada_logits = self.adavocab_head(hidden_states[:, -1:, :]) # (batch_size, seq_len, vocab_size)
# ada_logits = ada_logits.float()
self.adavocab_head.A.to("cpu")
self.adavocab_head.B.to("cpu")
lm_head_logits = None
lm_loss, mask_loss, topk_loss = None, None, None
loss = None
if labels is not None: # For prediction_step, training_step. Not for generation
# ------ Only for Training and Eval Loop------
# During Inference, we don't need self.lm_head in GPU memory
lm_head_logits = self.lm_head(hidden_states) # (batch_size, seq_len, vocab_size)
lm_head_logits = lm_head_logits.float()
# -------------------------------
# Supervised Signal of `self.adavocab_head` from two sources:
# 1. (Primary) BCEWithLogitsLoss between ada_logits and topk_gt_mask (distillation signal)
# 2. CrossEntropyLoss between ada_logits and labels with constraint (from ground truth labels)
if self.training: # training_step
# Loss from the second source
# Shift so that tokens < n predict n
shift_logits = ada_logits[..., :-1, :].contiguous() # (batch_size, seq_len - 1, vocab_size)
shift_labels = labels[..., 1:].contiguous() # (batch_size, seq_len - 1)
# Flatten the tokens
loss_fct = CrossEntropyLoss() # CE loss includes the softmax function
shift_logits = shift_logits.view(-1, self.config.vocab_size) # (batch_size * (seq_len - 1), vocab_size)
shift_labels = shift_labels.view(-1) # (batch_size * seq_len)
shift_labels = shift_labels.to(shift_logits.device)
lm_loss = loss_fct(shift_logits, shift_labels)
else: # prediction_step
_, lm_loss = self.pred_with_sliced_lm_head(ada_logits, hidden_states, input_ids, labels, min_logit=-100)
# Loss from the first source
ada_logits_flat = ada_logits.view(-1, self.config.vocab_size) # (batch_size * seq_len, vocab_size)
ada_probs = torch.sigmoid(ada_logits_flat) # (batch_size * seq_len, vocab_size)
topk_gt_mask = self.topk_mask(lm_head_logits) # (batch_size, seq_len, vocab_size)
# TODO: Add weights from lm_head_logits
topk_gt_mask = topk_gt_mask.view(-1, self.config.vocab_size) # (batch_size * seq_len, vocab_size)
mask_loss_fct = BCEWithLogitsLoss() # BCE Loss including the sigmoid function
mask_loss = mask_loss_fct(ada_logits_flat, topk_gt_mask)
ada_ones = ada_probs.sum() # scalar
# TODO: Handle pad token in no-packing case
target_ones = batch_size * seq_len * self.config.ADA_TOPK # scalar
target_ones = torch.tensor(target_ones, dtype=torch.float32).to(ada_ones.device)
# We need to normalize this loss, make it agnostic to batch size, seq_len, topK
topk_loss = F.l1_loss(ada_ones, target_ones) / target_ones
loss = self.config.ADA_LOSS_WEIGHT * lm_loss + self.config.ADA_MASK_WEIGHT * mask_loss + self.config.ADA_TOPK_WEIGHT * topk_loss
else: # For generation
with torch.no_grad():
ada_logits, lm_head_logits = self.pred_with_sliced_lm_head_simple(ada_logits, hidden_states[:, -1:, :])
if not return_dict:
output = (ada_logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return AdaCausalLMOutputWithPast(
loss=loss,
logits=ada_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
# Added by AdaVocab
lm_head_logits=lm_head_logits if lm_head_logits is not None else None,
lm_loss=self.config.ADA_LOSS_WEIGHT * lm_loss if lm_loss is not None else None,
mask_loss=self.config.ADA_MASK_WEIGHT * mask_loss if mask_loss is not None else None,
topk_loss=self.config.ADA_TOPK_WEIGHT * topk_loss if topk_loss is not None else None,
)
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
# TODO: Add `get` and `set` methods for `adavocab_head`
return AdaVocabCausalLM
AdaVocabLlamaForCausalLM = create_AdaVocabCausalLM(LlamaForCausalLM)
AdaVocabGemmaforCausalLM = create_AdaVocabCausalLM(GemmaForCausalLM)
AdaVocabQwen2ForCausalLM = create_AdaVocabCausalLM(Qwen2ForCausalLM)