Edit model card

wavlm-basic_s-f-o_8batch_10sec_0.0001lr_unfrozen

This model is a fine-tuned version of microsoft/wavlm-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2366
  • Accuracy: 0.8
  • F1: 0.7957

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.003
  • num_epochs: 1000

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
2.2461 1.0 131 2.0275 0.4667 0.3795
1.1331 2.0 262 0.9031 0.7833 0.7681
0.7081 2.99 393 0.4658 0.85 0.8344
0.4829 4.0 525 0.6289 0.8333 0.8257
0.2998 5.0 656 0.6962 0.8333 0.8257
0.1818 6.0 787 0.5314 0.8667 0.8745
0.168 6.99 918 0.6366 0.8667 0.8666
0.1822 8.0 1050 0.5684 0.8667 0.8621
0.1178 9.0 1181 0.5222 0.8833 0.8834
0.1731 10.0 1312 0.8176 0.85 0.8430
0.1967 10.99 1443 0.9820 0.8 0.7935
0.0788 12.0 1575 0.5773 0.8667 0.8655

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.