RuleBert-v0.4-k2 / README.md
ribesstefano's picture
Initial version
a6aa6c9
metadata
license: mit
base_model: papluca/xlm-roberta-base-language-detection
tags:
  - Italian
  - legal ruling
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: ribesstefano/RuleBert-v0.4-k2
    results: []

ribesstefano/RuleBert-v0.4-k2

This model is a fine-tuned version of papluca/xlm-roberta-base-language-detection on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3021
  • F1: 0.5409
  • Roc Auc: 0.6961
  • Accuracy: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 4
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.3653 0.12 250 0.3184 0.5103 0.6747 0.0
0.3513 0.24 500 0.3022 0.5103 0.6747 0.0
0.3758 0.36 750 0.2956 0.5103 0.6747 0.0
0.355 0.48 1000 0.3073 0.5409 0.6961 0.0
0.3499 0.6 1250 0.3098 0.5103 0.6747 0.0
0.3484 0.72 1500 0.3009 0.5103 0.6747 0.0
0.3394 0.85 1750 0.2978 0.5103 0.6747 0.0
0.3469 0.97 2000 0.2975 0.5103 0.6747 0.0
0.3522 1.09 2250 0.3021 0.5409 0.6961 0.0

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0