SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
False |
|
True |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9882 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("richie-ghost/setfit-sent-trans-mpnet-base-MH-Topic-Check")
# Run inference
preds = model("Planning a DIY home renovation project.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 4 | 33.7092 | 111 |
Label | Training Sample Count |
---|---|
True | 58 |
False | 138 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0007 | 1 | 0.1327 | - |
0.0354 | 50 | 0.094 | - |
0.0708 | 100 | 0.0263 | - |
0.1062 | 150 | 0.0034 | - |
0.1415 | 200 | 0.0008 | - |
0.1769 | 250 | 0.0004 | - |
0.2123 | 300 | 0.0002 | - |
0.2477 | 350 | 0.0003 | - |
0.2831 | 400 | 0.0001 | - |
0.3185 | 450 | 0.0003 | - |
0.3539 | 500 | 0.0 | - |
0.3892 | 550 | 0.0002 | - |
0.4246 | 600 | 0.0002 | - |
0.4600 | 650 | 0.0001 | - |
0.4954 | 700 | 0.0001 | - |
0.5308 | 750 | 0.0001 | - |
0.5662 | 800 | 0.0001 | - |
0.6016 | 850 | 0.0001 | - |
0.6369 | 900 | 0.0001 | - |
0.6723 | 950 | 0.0001 | - |
0.7077 | 1000 | 0.0001 | - |
0.7431 | 1050 | 0.0001 | - |
0.7785 | 1100 | 0.0001 | - |
0.8139 | 1150 | 0.0001 | - |
0.8493 | 1200 | 0.0001 | - |
0.8846 | 1250 | 0.0001 | - |
0.9200 | 1300 | 0.0001 | - |
0.9554 | 1350 | 0.0001 | - |
0.9908 | 1400 | 0.0001 | - |
1.0 | 1413 | - | 0.0092 |
1.0262 | 1450 | 0.0001 | - |
1.0616 | 1500 | 0.0001 | - |
1.0970 | 1550 | 0.0 | - |
1.1323 | 1600 | 0.0001 | - |
1.1677 | 1650 | 0.0001 | - |
1.2031 | 1700 | 0.0001 | - |
1.2385 | 1750 | 0.0 | - |
1.2739 | 1800 | 0.0001 | - |
1.3093 | 1850 | 0.0 | - |
1.3447 | 1900 | 0.0 | - |
1.3800 | 1950 | 0.0001 | - |
1.4154 | 2000 | 0.0 | - |
1.4508 | 2050 | 0.0 | - |
1.4862 | 2100 | 0.0 | - |
1.5216 | 2150 | 0.0001 | - |
1.5570 | 2200 | 0.0 | - |
1.5924 | 2250 | 0.0001 | - |
1.6277 | 2300 | 0.0 | - |
1.6631 | 2350 | 0.0 | - |
1.6985 | 2400 | 0.0001 | - |
1.7339 | 2450 | 0.0 | - |
1.7693 | 2500 | 0.0 | - |
1.8047 | 2550 | 0.0 | - |
1.8401 | 2600 | 0.0 | - |
1.8754 | 2650 | 0.0 | - |
1.9108 | 2700 | 0.0001 | - |
1.9462 | 2750 | 0.0 | - |
1.9816 | 2800 | 0.0 | - |
2.0 | 2826 | - | 0.012 |
2.0170 | 2850 | 0.0 | - |
2.0524 | 2900 | 0.0 | - |
2.0878 | 2950 | 0.0 | - |
2.1231 | 3000 | 0.0 | - |
2.1585 | 3050 | 0.0 | - |
2.1939 | 3100 | 0.0 | - |
2.2293 | 3150 | 0.0 | - |
2.2647 | 3200 | 0.0 | - |
2.3001 | 3250 | 0.0 | - |
2.3355 | 3300 | 0.0 | - |
2.3708 | 3350 | 0.0 | - |
2.4062 | 3400 | 0.0 | - |
2.4416 | 3450 | 0.0 | - |
2.4770 | 3500 | 0.0 | - |
2.5124 | 3550 | 0.0 | - |
2.5478 | 3600 | 0.0 | - |
2.5832 | 3650 | 0.0 | - |
2.6185 | 3700 | 0.0001 | - |
2.6539 | 3750 | 0.0 | - |
2.6893 | 3800 | 0.0 | - |
2.7247 | 3850 | 0.0 | - |
2.7601 | 3900 | 0.0 | - |
2.7955 | 3950 | 0.0 | - |
2.8309 | 4000 | 0.0 | - |
2.8662 | 4050 | 0.0001 | - |
2.9016 | 4100 | 0.0 | - |
2.9370 | 4150 | 0.0 | - |
2.9724 | 4200 | 0.0 | - |
3.0 | 4239 | - | 0.0115 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.0
- PyTorch: 2.2.1+cu121
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.